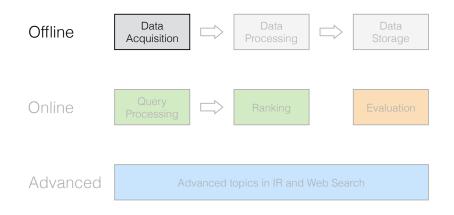

Information Retrieval

Data Acquisition


Ilya Markov i.markov@uva.nl

University of Amsterdam

Course overview

This lecture

Data acquisition methods

- Downloading
- Feeds
- API
- Metadata harvesting
- Crawling

- 2 Practical considerations
- 3 Duplicate detection

4 Spam

5 Summary

Spam

Summary

Scalability challenges in web search engines

Scalability Challenges in Web Search Engines

B. Barla Cambazoglu Ricardo Baeza-Yates

Synthesis Lectures on Information Concepts, Retrieval, and Services

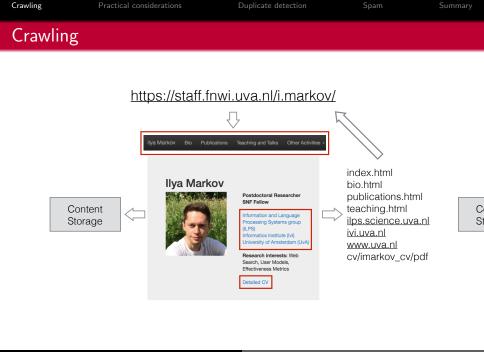
Gary Marchionini, Series Editor

Ilya Markov

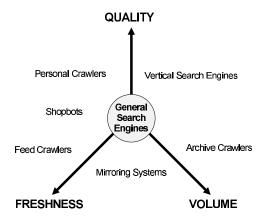
Crawling

- Basic architecture
- Politeness
- Extending the Web repository
- Refreshing the Web repository

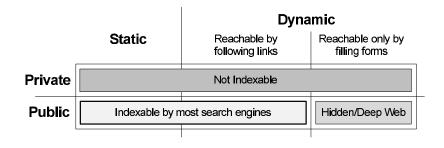
2 Practical considerations


- 3 Duplicate detection
- 4 Spam

5 Summary


1 Crawling

Basic architecture


Summary

Taxonomy of crawlers

Baeza-Yates and Ribeiro-Neto, "Modern Information Retrieval"

Taxonomy of pages

Baeza-Yates and Ribeiro-Neto, "Modern Information Retrieval"

1 Crawling

Politeness

How to be polite?

- A Web crawler must...
 - identify itself
 - 2 obey the robots exclusion protocol
 - 3 keep a low bandwidth usage in a given web site

Robot identification

- Fill the user-agent field in the HTTP request
- Include the word "crawler", "robot", "bot", etc.

Robot exclusion protocol

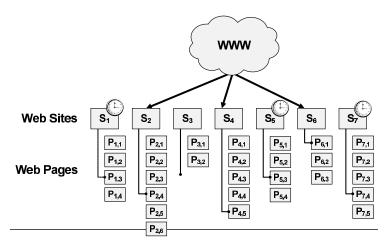
- Server-wise exclusion robots.txt
- Page-wise exclusion
 <META NAME="ROBOTS" CONTENT="NOINDEX, NOFOLLOW">
- Cache exclusion

<META NAME="ROBOTS" CONTENT="NOARCHIVE">

Bandwidth usage

- Empirical thresholds
- Adaptive politeness policy, e.g., 10 imes t
- crawl-delay:45 (in seconds in robots.txt)

Summary


Simple crawling thread implementation

procedure CRAWLERTHREAD(frontier) while not frontier.done() do website \leftarrow frontier.nextSite() $url \leftarrow website.nextURL()$ if website.permitsCrawl(url) then $text \leftarrow retrieveURL(url)$ storeDocument(url, text) for each url in parse(text) do frontier.addURL(url) end for end if frontier.releaseSite(website) end while end procedure

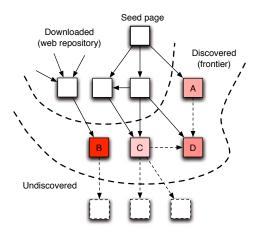
Croft et al., "Search Engines, Information Retrieval in Practice"

Summary

Simple crawling thread implementation

Baeza-Yates and Ribeiro-Neto, "Modern Information Retrieval"

Ilya Markov



1 Crawling

- Extending the Web repository

Summary

Extending the Web repository

- Random ordering
- Breadth-first
- In-degree
- Potential impact on search quality

B. Cambazoglu and R. Baeza-Yates, "Scalability Challenges in Web Search Engines"

Duplicate detection

Spam

Summary

Extending the Web repository

What data structures could be used to implement the frontier?

- Random ordering
- Breadth-first
- In-degree
- Potential impact on search quality

1 Crawling

- Refreshing the Web repository

Refreshing the Web repository

- Identify changes in web content
- 2 Measure these changes
- ③ Predict changes
- ④ Select pages to update

Identifying changes

Client request: HEAD /csinfo/people.html HTTP/1.1 Host: www.cs.umass.edu HTTP/1.1 200 OK Date: Thu, 03 Apr 2008 05:17:54 GMT Server: Apache/2.0.52 (CentOS) Last-Modified: Fri, 04 Jan 2008 15:28:39 GMT Server response: ETag: "239c33-2576-2a2837c0" Accept-Ranges: bytes Content-Length: 9590 Connection: close Content-Type: text/html; charset=ISO-8859-1

Croft et al., "Search Engines, Information Retrieval in Practice"

Measuring changes

Freshness

$$F_p(t) = \begin{cases} 1 \text{ if } p \text{ has not changed since last crawl} \\ 0 \text{ otherwise} \end{cases}$$

Age

$$A_p(t) = \int_0^t P(p \text{ changed at time } x)(t-x)dx$$

Summary

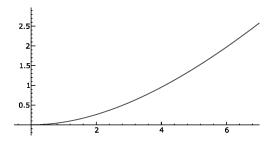
Measuring changes

Croft et al., "Search Engines, Information Retrieval in Practice"

Predicting changes

Age

$$A_p(t) = \int_0^t P(p \text{ changed at time } x)(t-x)dx$$


• Time between two changes follows an exponential distribution

$$A_p(t) = \int_0^t \lambda e^{-\lambda x} (t-x) dx$$

• λ – average number of changes

Crawling	Practical considerations	Duplicate detection	Spam	Summary
Example				

- One update a week, $\lambda = 1/7$
- In the end of the week, the expected age is approx. 2.6

Croft et al., "Search Engines, Information Retrieval in Practice"

Selecting pages to update

- Optimizing freshness or age?
- Optimizing freshness
 - Pages with low change frequency do not need to be refreshed often
 - Pages with high change frequency are never fresh
 - Refresh pages with medium change frequency
- Optimizing age
 - The older a page gets, the more it costs not to crawl it

Summary

Selecting pages to update

	Α	В	С	D
PageRank	0.0003	0.0007	0.0002	0.0001
Average daily click count	47	332	2	1974
Last download time	2 hours ago	1 day ago	8 days ago	6 hours ago
Estimated update frequency	daily	never	minutely	yearly

What data structures could be used to implement refreshing?

B. Cambazoglu and R. Baeza-Yates, "Scalability Challenges in Web Search Engines"

Practical implementation

Maintain several queues

- A queue for news sites that is refreshed several times a day
- A daily or weekly queue for popular or relevant sites
- A large queue for the rest of the Web

1 Crawling

Practical considerations

- Storage and data structures
- Distributed crawling
- Factors affecting crawling performance
- Deep web

3 Duplicate detection

4 Spam

5 Summary

Ilya Markov

Practical considerations

Storage and data structures

- Factors affecting crawling performance

Storing documents

- Support random and bulk access
- Flat file system
- A page is accessed through an identifier, e.g., a hash value of its URL

Storing document info

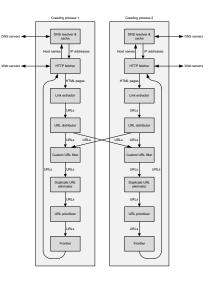
- Location on disk, size, history of HTTP status codes, download times, etc.
- Catalog-like data structures, e.g., B+ tree

Distributed storage

- Pages are distributed over storage nodes
- Uniformly or based on hash value ranges
- The mapping between pages and storage nodes is maintained in an index
- $\, \bullet \,$ Distribution based on hash value ranges \rightarrow smaller index
- Uniform distribution \rightarrow simplified redistribution

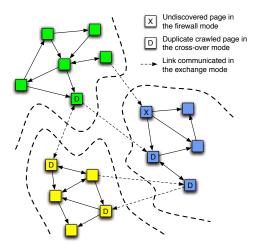
Practical considerations

- Distributed crawling


Duplicate detection

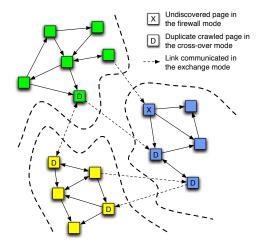
Spam

Summary


Distributed crawling

Synchronize URLs between threads
Minimize communication overhead

Summary


Firewall and cross-over modes

B. Cambazoglu and R. Baeza-Yates, "Scalability Challenges in Web Search Engines"

Summary

Exchange mode

- Partition pages between crawling nodes based on domains
- 2 Exchange only non-local links
- ③ Send URLs in small batches

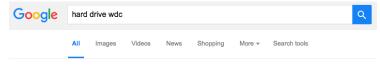
B. Cambazoglu and R. Baeza-Yates, "Scalability Challenges in Web Search Engines"

Practical considerations

Factors affecting crawling performance

Factors affecting crawling performance

- Delay attack
- Spider trap
- Link farm
- Website mirroring
- Soft 404 error


2 Practical considerations

- Factors affecting crawling performance
- Deep web •

- No incoming links
- Password-protected
- Dynamic content
- Web forms

Deep web example

About 471,000 results (0.69 seconds)

Hard Drives, Network Drives, Media Players | Western Digital (WD) www.wdc.com/ -

WD is a leading provider of best-selling Internal & External Hard Drives and award-winning Media Player & Network Drives. Discover the power of data ...

Results from wdc.com

Internal Hard Drive Overview

NAS - Mobile - WD VelociRaptor -CE/AV - Internal Drive Kits - ...

WD Support / Downloads ...

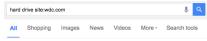
Software & Downloads. WD Software Product Firmware ...

External Portable Hard Drives

Check out the best selling WD External Portable Hard Drives ... WD Support How to format a WD external hard drive in ... Contact Support ...

Internal Desktop Hard Drives ...

Q


Our internal hard drives deliver the performance, capacity, speed ...

External Storage

External Storage. For PC. Desktop Drives ... Network Attached ...

Summary

Deep web example

About 15,000 results (0.42 seconds)

Hard Drives, Network Drives, Media Players | Western Digital (WD) www.wdc.com/ * Western Digital *

WD is a leading provider of best-selling Internal & External Hard Drives and award-winning Media Player & Network Drives. Discover the power of data ...

Internal Hard Drive Overview - Western Digital

www.wdc.com/er/products/internal/ * Western Digital * Our internal hard drives deliver the performance, capacity, speed and reliability that you expect from the best selling hard drive manufacturer in the world.

External Portable Hard Drives | Western Digital (WD)

www.wdc.com/en/products/external/portable/ * Western Digital * Check out the best selling WD External Portable Hard Drives. Discover which type of data storage is right for you with an easy side-by-side comparison.

Internal Mobile Hard Drives Overview - Western Digital

www.wdc.com/en/products/internal/mobile/ * Western Digital * Our internal hard drives deliver the performance, capacity, speed and reliability that you expect from the best selling hard drive and storage manufacturer in the ...

WD Elements - Portable Hard Drives

www.wdc.com/EN/PRODUCTS/products.aspx?id=470 * Western Digital * WD Elements Portable Hard Drives. ... Passport Ultra Metal Edition · My Passport Ultra · WD Elements Portable · Compare All. For Mac. Desktop Drives for Mac.

iñiD			عر ا Blog ا
External Storage	Internal Hard Drives	Personal Cloud	Network Attached Storage
WD Home /		_	

About 2,590 results (0.40 seconds)

Internal Hard Drive Overview www.wdc.com/en/products/internal/

Our internal hard drives deliver the performance, capacity, speed and reliability that you expec world.

External Portable Hard Drives | Western Digital (WD)

www.wdc.com/en/products/external/portable/

Check out the best selling WD External Portable Hard Drives. Discover which type of data stor

Internal Mobile Hard Drives Overview

www.wdc.com/en/products/internal/mobile/

Our internal hard drives deliver the performance, capacity, speed and reliability that you expec manufacturer in the ...

External Hard Drives | Western Digital (WD) www.wdc.com/en/products/external/desktop/

Check out the best selling WD External Hard Drives. Discover which type of data storage is rig

WD Gold - Datacenter Hard Drives | Western Digital www.wdc.com/en/products/products.aspx?id=1670

WD Gold hard drives employ advanced technology to deliver among the best in reliability, capa

- 3 Duplicate detection

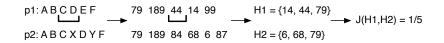
Duplicates

- Mirroring
- Different URLs, same content
- URL modifiers, e.g., /dir/page.html&jsessid=09A89732

Duplicate detection: Hashing

- Compute a hash value of a document
- 2 Directly compare documents with the same hash value

Near duplicate detection: Shingling


- Extract all unique (consecutive) sequences of n words from a document (n-grams/shingles)
- 2 Compute hash values for the extracted shingles
- 3 For two documents compute the Jaccard coefficient

$$J(d_1, d_2) = rac{|H(d_1) \cap H(d_2)|}{|H(d_1) \cup H(d_2)|}$$

- **④** Documents are near-duplicates if $J(d_1, d_2) > threshold$
- In practice, hashes are sorted and only the top-k hashes are considered to calculate J(d₁, d₂)

Summary

Near duplicate detection: Shingling

B. Cambazoglu and R. Baeza-Yates, "Scalability Challenges in Web Search Engines"

1 Crawling

- 2 Practical considerations
- 3 Duplicate detection

5 Summary

- Cloacking, redirection spam
- Link spam
- Content spam
- Link spam

Crawling

Duplicate detection

Spam

Summary

Cloacking, redirection spam

Serving crawlers and users with different content

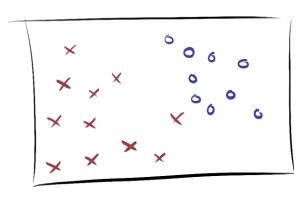
Link spam

- Link farms
 - Buy a large number of domains
 - Create a large number of sites
 - Link them to each other
- Blog spam, comment spam, wiki spam
- Hidden links

Content spam

- Keyword stuffing
 - · Raise the keyword count, variety, and density
- Hidden or invisible text
 - Unrelated text using same color as the background
 - Using tiny font size
 - Hiding within HTML code
- Doorway pages
 - Designed to rank highly within search results
 - Redirect users to spam content
- Scraper sites
 - "Scrape" other sources of content
 - Create "content" for a website

https://en.wikipedia.org/wiki/Spamdexing


Click spam

Reasons

- Make competitors pay for clicks
- Compromise publishers
- Implementation
 - Many computers in different geographic locations
 - Use Trojan code on personal computers
 - Hit inflation attack

https://en.wikipedia.org/wiki/Click_fraud

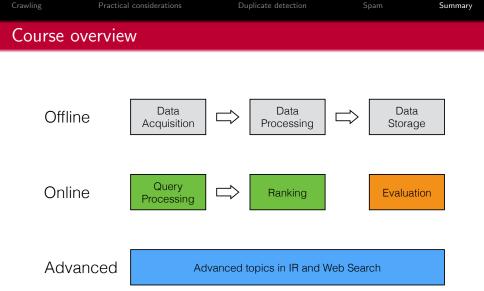
Identifying spam

Picture taken from http://smerity.com/media/talks/ml_for_your_robotic_army/template.html

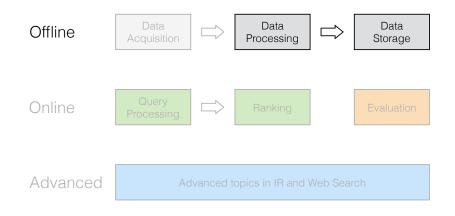
1 Crawling

- 2 Practical considerations
- 3 Duplicate detection

4 Spam


Data acquisition summary

- 1 Crawling
 - Basic architecture
 - Politeness
 - Extending the Web repository
 - Refreshing the Web repository
- Practical considerations
 - Storage and data structures
 - Distributed crawling
 - Factors affecting crawling performance
 - Deep web
- 3 Duplicate detection
- 4 Spam


5 Summary

Materials

- Croft et al., Chapters 3.1-3.4, 9.1.5
- Baeza-Yates and Ribeiro-Neto, Chapter 12
- B. Barla Cambazoglu and Ricardo Baeza-Yates
 Scalability Challenges in Web Search Engines
 Morgan & Claypool Publishers, 2017

Next lecture

