
Contents

9 Tabular parsing 2
9.1 Cubic-time parsing . 2

9.1.1 The algorithm . 2
9.1.2 Constructing a parse tree . 3

9.2 Parsing through matrix multiplication . 5
9.2.1 An opportunity to multiply matrices . 5
9.2.2 Fast matrix multiplication . 7
9.2.3 A combinatorial method of Boolean matrix multiplication 8
9.2.4 Recursive partition of matrices . 9
9.2.5 Constructing a parse tree . 14

9.3 Square-time parsing for unambiguous grammars 14
9.4 Parsing for pair-wrapping grammars . 18

9.4.1 The direct O(n6)-time algorithm . 18
9.4.2 Reduction to matrix multiplication . 19

Bibliography 20

Name index 21

1

Chapter 9

Tabular parsing

Tabular parsing algorithms: derive all true propositions about the input string and its con-
stituents, storing them in a table. For grammars describing substrings, such as the ordinary
grammars, given an input string w = a1 . . . an, the possible propositions about its constituents
are of the form A(ai+1 . . . aj), where A is a category symbol, and i and j are any positions in w.
An algorithm may store such propositions in a table indexed by i and j, where the symbol A is
put into an entry (i, j).

As these algorithms derive all propositions about a string, they are not affected by rules with
multiple premises, and hence work for conjunctive and Boolean grammars in the same way as
for ordinary grammars.

9.1 Cubic-time parsing

The simplest parsing method for ordinary grammars was independently discovered by Cocke,
by Kasami [6] and by Younger [15], and is therefore known as the Cocke–Kasami–Younger
algorithm (occasionally, Cocke–Younger–Kasami). The algorithm applies to conjunctive and
Boolean grammars with minimal modifications.

9.1.1 The algorithm

Let G = (Σ, N,R, S) be a Boolean grammar in binary normal form, let w = a1 . . . an be an
input string. The simple cubic-time parsing algorithm constructs the parsing table T ∈ (2N)n×n,
with each element Ti,j with 0 6 i < j 6 n representing the set of nonterminals that generate the
substring between the positions i+ 1 and j:

Ti,j = {A ∈ N | ai+1 . . . aj ∈ LG(A)}.

The elements of this table can be computed inductively on the length j − i of the substring,
beginning with the elements Ti−1,i, each depending only on the symbol ai, and continuing with
larger and larger substrings, until the element T0,n is computed. As the basis of the induction,
let

Ti−1,i = {A |A→ ai ∈ R}.
For the induction step, consider first the set of all pairs (B,C), with B,C ∈ N , for which the
concatenation BC generates the substring ai+1 . . . aj .

Pi,j = { (B,C) |B,C ∈ N, ai+1 . . . aj ∈ LG(BC)}

This value can be calculated as

Pi,j =

j−1⋃
k=i+1

Ti,k × Tk,j ,

2

Tabular parsing 3

where the position k represents a cutting point of the string ai+1 . . . aj into two substrings:
ai+1 . . . ak generated by B and ak+1 . . . aj generated by C, and the information on those shorter
substrings is acquired from the sets Ti,k and Tk,j , which must have been computed before. From
the set Pi,j , one can determine the set of nonterminals generating the same substring as

Ti,j = f(Pi,j),

where the function f : 2N×N → 2N , defined by

f(P) = {A | ∃A→ BC ∈ R : (B,C) ∈ P}

for ordinary grammars, by

f(P) = {A | ∃A→ B1C1 & . . .&BmCm ∈ R : (Bt, Ct) ∈ P for all t}

for conjunctive grammars, and by

f(P) = {A | ∃A→ B1C1 & . . .&BmCm &¬D1E1 & . . .&¬Dm′Em′ ∈ R :

(Bt, Ct) ∈ P and (Dt, Et) /∈ P for all t}

for Boolean grammars, represents the logic in the rules of the grammar.
Algorithm 9.1 constructs the table Ti,j according to the above equations.

Algorithm 9.1 The Cocke–Kasami–Younger algorithm for Boolean grammars
Let G = (Σ, N,R, S) be a Boolean grammar in the binary normal form. Let w = a1 . . . an,
where n > 1 and ai ∈ Σ, be an input string. For all 0 6 i < j 6 n, let Ti,j
be a variable ranging over subsets of N , and let P be a variable ranging over subsets of
N ×N .
1: for i = 1 to n do
2: Ti−1,i = {A |A→ ai ∈ R}
3: for ` = 2 to n do
4: for i = 0 to n− ` do
5: let j = i+ `
6: let P = ∅
7: for all k = i+ 1 to j − 1 do
8: P = P ∪ (Ti,k × Tk,j)
9: Ti,j = f(P)

10: accept if and only if S ∈ T0,n

For ordinary grammars, the algorithm can be slightly simplified. In this case, the function
f is defined as f(P) = {A | ∃(B,C) ∈ P : A → BC ∈ R}, and it is distributive over union:
f(P ∪ P ′) = f(P) ∪ f(P ′). Therefore, it is not necessary to accummulate all pairs in the set
P before applying the function f . It can be applied directly to each Cartesian product, as in
Algorithm 9.2.

9.1.2 Constructing a parse tree

The algorithm has so far been defined as a recognizer, which determines whether the string
is generated by the grammar or not. If the string is found to be generated by the grammar,
one would typically be interested in obtaining a parse tree of this string. Since all the necessary
information is in the parsing table Ti,j , one can first build this table by Algorithm 9.1 and then

4 A. Okhotin, “Formal grammars” (chapter 9 draft, September 30, 2014)

Algorithm 9.2 The Cocke–Kasami–Younger algorithm for ordinary grammars
Let G = (Σ, N,R, S) be an ordinary grammar in the Chomsky normal form. Let w = a1 . . . an,
where n > 1 and ai ∈ Σ, be an input string. For all 0 6 i < j 6 n, let Ti,j be a variable ranging
over subsets of N .
1: for i = 1 to n do
2: Ti−1,i = {A |A→ ai ∈ R}
3: for ` = 2 to n do
4: for i = 0 to n− ` do
5: let j = i+ `
6: for all k = i+ 1 to j − 1 do
7: Ti,j = Ti,j ∪ f(Ti,k × Tk,j)
8: accept if and only if S ∈ T0,n

Algorithm 9.3 Parse tree construction procedure for ordinary grammars
Let G = (Σ, N , R, S) be an ordinary grammar in Chomsky normal form, let w = a1 . . . an,
with n > 1 and ai ∈ Σ, be an input string, and let the sets Ti,j = {A | ai+1 . . . aj ∈ LG(A)}
be available for all 0 6 i < j 6 n. Then, for every substring a`+1 . . . am and for every symbol
A ∈ T`,m generating this substring, the following procedure constructs a parse tree of a`+1 . . . am
from A.
Procedure parse(A, `,m):
1: if m− ` = 1 then
2: return tree with root A→ am connected to the leaf am
3: else
4: for all rules A→ BC ∈ R do
5: for k = `+ 1 to m− 1 do
6: if B ∈ T`,k and C ∈ Tk,m then
7: Create a node τ labelled with A→ BC
8: Add descendant parse(B, `, k) to τ
9: Add descendant parse(C, k,m) to τ

10: return τ

Tabular parsing 5

use another procedure to construct the parse tree according to this table. This procedure is given
as Algorithm 9.3.

The running time, which is proportional to n · t, where n is the length of the input and t is
the number of nodes in the resulting tree. Since t = Θ(n), the time complexity of this step is
Θ(n2), which is smaller than the time spent constructing the parsing table.

An extension of this method to conjunctive and Boolean grammars (Theorem 9.4) in the
worst case works in cubic time.

Algorithm 9.4 Parse tree construction procedure for Boolean grammars
Let G = (Σ, N , R, S) be a Boolean grammar in Chomsky normal form, let w = a1 . . . an, with
n > 1 and ai ∈ Σ, be an input string and let Ti,j = {A |ai+1 . . . aj ∈ LG(A)}, with 0 6 i < j 6 n,
be its parsing table. Once a parse tree of a substring ai+1 . . . aj from A is constructed, it is stored
in a global variable τA,i,j , and recalled whenever the same tree is needed again, in order to avoid
unnecessary recomputations.
The following procedure constructs a parse tree of a`+1 . . . am from A, assuming that A ∈ T`,m.
Procedure parse(A, `,m):
1: if τA,`,m is defined then
2: return τA,`,m

3: else if m− ` = 1 then
4: return tree with root A→ am connected to the leaf am
5: else
6: for all rules A→ B1C1 & . . .&BrCr &¬Br+1Cr+1 & . . .&¬BsCs &¬ε ∈ R do
7: integer p[1..s]
8: for t = 1 to s do
9: for k = `+ 1 to m− 1 do

10: if Bt ∈ T`,k and Ct ∈ Tk,m then
11: p[t] = k
12: if p[t] is defined for all t ∈ {1, . . . , r} and for none of t ∈ {r + 1, . . . , s} then
13: Create a node τ labelledA→ B1C1 & . . .&BrCr &¬Br+1Cr+1 & . . .&¬BsCs &¬ε

14: for t = 1 to r do
15: Add descendant parse(Bt, `, p[t]) to τ
16: Add descendant parse(Ct, p[t],m) to τ
17: τA,`,m = τ
18: return τ

9.2 Parsing through matrix multiplication

A parsing algorithm discovered by Valiant [14], which constructs the same table Ti,j using
Boolean matrix multiplication.

9.2.1 An opportunity to multiply matrices

Consider the cubic-time parsing algorithm from Section 9.1. The most time-consuming oper-
ation in Algorithm 9.1 is computing the sets Pi,j =

⋃j−1
k=i+1 Ti,k×Tk,j . If each Cartesian product

is computed individually, as it is done in line 8 of the above algorithm, then spending linear
time for each Pi,j is unavoidable. The idea behind fast parsing is to rearrange the order of these
operations, so that much of the work could be represented as Boolean matrix multiplication.

6 A. Okhotin, “Formal grammars” (chapter 9 draft, September 30, 2014)

Figure 9.1: How products of submatrices of T contribute to calculating submatrices of P : (a) in
the basic algorithm; (b) in Example 9.1.

To see how the work done by Algorithm 9.1 is related to matrix multiplication, consider the
following adaptation of the notion of matrix product to matrices with subsets of N as elements.

Definition 9.1. For any numbers m, `, n > 1, let X ∈ (2N)m×` and Y ∈ (2N)`×n be two matrices
with subsets of N as elements. Their product X × Y is a matrix Z ∈ (2N×N)m×n, with

Zi,j =
⋃̀
k=1

Xi,k × Yk,j .

Such a product can be represented as a product of |N |2 pairs of Boolean matrices as follows.
For every B,C ∈ N , consider the Boolean matrix ZBC , where ZBC

i,j denotes the membership
of the pair (B,C) in Zi,j . Then the Boolean matrix ZBC is exactly the product XB × Y C of
the Boolean matrix XB, which represents the membership of B in the elements of X, with the
similarly defined Boolean matrix Y C .

In the terminology of Definition 9.1, lines 6–8 of Algorithm 9.1 actually multiply a 1× (`−1)
submatrix of T by a (` − 1) × 1 submatrix of T , as illustrated in Figure 9.1(a). The result is a
1 × 1 matrix, that is, a single set Pi,j ⊆ N × N . Thus, matrix products used in Algorithm 9.1
are always products of row vectors with column vectors.

In order to use fast matrix multiplication, one should somehow rearrange the total bulk
of operations calculated in line 8, for all applicable i, j, k, so that large blocks of Cartesian
products would be calculated together as products of square matrices. The below example
demonstrates such a rearrangement for input strings of length 5, which involves a product of two
2× 2 submatrices of T .

Example 9.1. Let w = a1a2a3a4a5 be an input string, and consider the partially constructed
parsing table depicted in Figure 9.1(b), with Ti,j constructed for 1 6 i < j 6 3 and for 3 6 i <
j 6 5, that is, for the substrings a1a2a3 and a3a4a5, as well as for their substrings.

Then the following product of matrices of sets(
T0,2 T0,3

T1,2 T1,3

)
×
(
T2,4 T2,5

T3,4 T3,5

)
=

(
(T0,2 × T2,4) ∪ (T0,3 × T3,4) (T0,2 × T2,5) ∪ (T0,3 × T3,5)
(T1,2 × T2,4) ∪ (T1,3 × T3,4) (T1,2 × T2,5) ∪ (T1,3 × T3,5)

)
=

=

(
X0,4 X0,5

X1,4 X1,5

)
defines partial data for the following four elements of the table of pairs:

(
P0,4 P0,5

P1,4 P1,5

)
. First of

all, each of these four elements satisfies Xi,j ⊆ Pi,j. In particular, the set X1,4 is exactly P1,4.
The set X0,4 lacks the Cartesian product T0,1×T1,4 that should be in P0,4 by definition, and thus
does not take into account the factorization a1 · a2a3a4; actually, the set T1,4 is not yet known

Tabular parsing 7

at this point, and hence the calculation of that Cartesian product has to be delayed. The element
X1,5 is symmetrically incomplete, as it lacks the Cartesian product T1,4×T4,5 corresponding to the
factorization a2 ·a3a4a5. Finally, X0,5 misses two Cartesian products, T0,1×T1,5 and T0,4×T4,5,
which can be handled only using the not yet available elements T0,4 and T1,5. In total, this matrix
product computes 8 Cartesian products out of the 12 needed for these four elements of P , and
the computation could then proceed with calculating the remaining four Cartesian products.

Already in this small example, using one product of 2×2 matrices requires changing the order
of computing the elements {Ti,j}: the elements T0,3 and T2,5 need to be calculated before T1,4.
Furthermore, the subsequent computation should be arranged to take care of the four remaining
factorizations, which also must be considered in a specific order, evaluating Ti,j = f(Pi,j) for
the appropriate entries at the appropriate time. In the next section, the whole algorithm will
be restated as a recursive procedure, which arranges the computation so that as much work as
possible is offloaded into products of the largest possible matrices.

9.2.2 Fast matrix multiplication

Strassen’s method.

A product of two 2× 2 matrices is defined using 8 multiplications and 4 additions.

Lemma 9.1 (Strassen [13]). Let R be a ring, let A =

(
a11 a12

a21 a22

)
and B =

(
b11 b12

b21 b22

)
be

two 2 × 2 matrices over R. Then their product AB =

(
c11 c12

c21 c22

)
can be calculated using 7

multiplications and 18 additions in R.

Proof. The intended result is illustrated in Figure 9.2(left), where horizontal dashed lines rep-
resent the four elements of A, vertical dashed lines represent the four elements of B, and the
intersection of any two lines represents the product of these elements. Solid lines represent sums.

c11 d1

a11

a12

a21

a22

b11 b21 b12 b22

a11

a12

a21

a22

b11 b21 b12 b22

c21

c12 c22 d2 d4

d3

d5
d6

d7

Figure 9.2: Multiplying two 2 × 2 matrices using 7 multiplications: (left) the eight products of
elements featured in the desired matrix product; (right) Strassen’s seven products.

8 A. Okhotin, “Formal grammars” (chapter 9 draft, September 30, 2014)

Calculate seven products as follows:

d1 = (a11 + a22)(b11 + b22),

d2 = (a21 + a22)b11,

d3 = a11(b12 − b22),

d4 = a22(b21 − b11),

d5 = (a11 + a12)b22,

d6 = (a21 − a11)(b11 + b12),

d7 = (a12 − a22)(b21 + b22).

These products are illustrated in Figure 9.2(right), where a filled circle represents a product with
a positive sign, while an empty circle refers to a product multiplied by −1. Then the desired
matrix product AB is expressed as follows:

c11 = d1 + d4 + d7 − d5

c12 = d3 + d5

c21 = d2 + d4

c22 = d1 + d3 + d6 − d2

Then two 2k × 2k matrices over a ring R can be multiplied in 7k operations. Consequently,
two n× n matrices can be multiplied in O(nlog2 7) operations.

For Boolean n×n matrices: change them to 0/1 matrices in the ring of residues modulo n+1,
then multiply them in this ring using O(nlog2 7) ring operations (Adleman, Booth, Preparata,
Ruzzo [1]).

Improved version of Lemma 9.1 using 7 multiplications and only 15 additions, attributed to
Paterson, see Fischer and Probert.

9.2.3 A combinatorial method of Boolean matrix multiplication

The method of Arlazarov, Dinitz, Kronrod and Faradzhev [3], known in the literature as the
method of Four Russians.

Let A and B be two n× n Boolean matrices, the goal is to compute their product C = AB.
Let k be a small number of the order of log2 n, and assume that n is divisible by k; if it is not,
then n can be increased. Each row of the matrix A is split into n

k vectors of size 1 × k, called
chunks. The chunks in each i-th row are denoted by Ai,1, . . . Ai,n

k
∈ B1×k. The matrix B is split

into n
k submatrices of size k × n, called bands, and denoted by B1, . . . , Bn

k
∈ B1×k. Then each

i-th row of C, denoted by Ci ∈ B1×n, can be represented as follows,

Ci =

n
k∨

r=1

Ai,rBr,

where each product of a chunk Ai,r by the corresponding band Br illustrated in Figure 9.3, is a
1 × n row, and the disjunction symbol in the formula for Ci represents a bitwise disjunction of
such rows.

The method works by pre-computing the products of all possible 1 × k chunks with each
band of B. For each chunk (x1, . . . , xk) and for each band Br, the algorithm computes the
vector-by-matrix product

Dr[x1, . . . , xk] = (x1, . . . , xk) ·Br.

Tabular parsing 9

i

k

k

A B C

r

r

Ai,r

Br

Ci

Figure 9.3: A product of a 1× k chunk Ai,r by a k × n band Br contributing to the i-th row of
C.

and stores the resulting 1 × n row in the memory. This product can actually be calculated as
a bitwise disjunction of all rows of Br corresponding to true bits of the chunk, which is a very
efficient operation for typical computer hardware.

Once the pre-computation stage is complete, the algorithm calculates each i-th row of C as

Ci =

n
k∨

r=1

Dr[Ai,r],

that is, by looking up the pre-computed products Ai,rBr indexed by the contents of the chunk
Ai,r and by the band number r. This is again a bitwise disjunction of rows, which can be very
efficiently implemented.

The running time of the algorithm is calculated as follows. At the pre-computation stage,
there are 2k different chunks, the matrix B contains n

k bands, and each multiplication takes kn
bit operations; therefore, the pre-computation stage requires 2k · nk · kn = 2kn2 bit operations.
The subsequent calculation of each of the n rows of C requires taking a disjunction of n

k rows of
n bits each, to the total of n3

k operations. Let k = log2 n− log2 log2 n. Then the overall number
of operations is

2kn2 +
n3

k
=

n3

log2 n
+

n3

log2 n− log2 log2 n
= O

(n3

log2 n

)
.

A much more sophisticated method of Williams works in O(n3

(logn)2
) bit operations.

9.2.4 Recursive partition of matrices

Let w = a1 . . . an be an input string. For the time being, assume that n + 1 is a power of
two, that is, the length of the input string is a power of two minus one; this restriction can be
relaxed in an implementation, which will be discussed in the next section.

The algorithm uses the following data structures. First, there is an (n+ 1)× (n+ 1) table T
with Ti,j ⊆ N , as in Algorithm 9.1, and the goal is to set each entry to

Ti,j = {A | ai+1 . . . aj ∈ L(A)}, for all 0 6 i < j 6 n.

The second table P has elements Pi,j ⊆ N ×N , each corresponding to the value of P computed
by Algorithm 9.1 in the iteration (` = j − i, i). The target value is

Pi,j = { (B,C) | ai+1 . . . aj ∈ L(B)L(C)} for all 0 6 i < j 6 n.

All entries of both tables are initialized to empty sets, and then are gradually filled by the
following two recursive procedures:

10 A. Okhotin, “Formal grammars” (chapter 9 draft, September 30, 2014)

0

n-1

0 m

m'

m'

'

'

k

0

n-1

m

0 m

m

B

C

BC

(a) (b)

i

j

Figure 9.4: (a) The submatrix of T calculated by compute(`,m); (b) The pre-conditions of
complete(`,m, `′,m′) and the submatrix of T it calculates.

• The first procedure, compute(`,m), constructs the correct values of Ti,j for all ` 6 i < j <
m, as illustrated in Figure 9.4(a).

• The other procedure, complete(`,m, `′,m′), is defined for ` < m 6 `′ < m′, where m− ` =
m′ − `′ is a power of two. Its four arguments actually specify a submatrix of T containing
all elements Ti,j with ` 6 i < m and `′ 6 j < m′, as shown in Figure 9.4(b). The procedure
assumes that the elements Ti,j are already constructed for all i and j with ` 6 i < j < m,
as well as for all i, j with `′ 6 i < j < m′; these are the dark grey triangles in Figure 9.4(b).
It is furthermore assumed that for all ` 6 i < m and `′ 6 j < m′, the current value of Pi,j

is
Pi,j = { (B,C) | ∃k (m 6 k < `′) : ai+1 . . . ak ∈ L(B), ak+1 . . . aj ∈ L(C)},

which is a subset of the intended value of Pi,j . This means that whenever a substring
ai+1 . . . aj is in LG(BC) because of a partition with a middle point between m and `′, then
the pair (B,C) must already be in Pi,j , as illustrated in the figure.

Under these assumptions, complete(`,m, `′,m′) constructs Ti,j for all ` 6 i < m and
`′ 6 j < m′, which is shown in Figure 9.4(b).

The algorithm is going to calculate products of square submatrices of T , putting the results to
submatrices of P , and these operations shall be represented in the algorithm using the following
notation. Given an n × n matrix X and a quadruple of numbers A = (`,m, `′,m′), as in the
arguments for the procedure complete(), denote by XA the (m− `)× (m′ − `′) submatrix of X
formed by its rows from ` to m− 1 and its columns from `′ to m′ − 1. A product of matrices of
sets X,Y ∈ (2N)m×m is a matrix Z ∈ (2N×N)m×m, defined by

Zi,j =
m⋃
k=1

Xi,k × Yk,j ,

as in the earlier Definition 9.1. Elementwise union of two matrices Z,Z ′ ∈ (2N×N)m×m is denoted
by Z ∪ Z ′ = Ẑ, where Ẑi,j = Zi,j ∪ Zi,j .

The partitions of the matrix in compute() and complete() are illustrated in Figure 9.5. Note
that m− ` is a power of two in each call to compute() and to complete(), and accordingly, if the
input string is of length 2k − 1, then the algorithm multiplies submatrices of size 1 × 1, 2 × 2,
4 × 4, and so on up to 2k−2 × 2k−2. Furthermore, both m and ` are always divisible by m − `,
and hence all 2k−i × 2k−i submatrices being multiplied are aligned over a 2k−i-step grid.

Tabular parsing 11

Algorithm 9.5 Parsing through matrix multiplication (Valiant’s algorithm)
Let G = (Σ, N,R, S) be a Boolean grammar in the binary normal form. Let w = a1 . . . an, where
n > 1 and ai ∈ Σ, be an input string; assume n is a power of two.
Main procedure:
1: compute(0, n+ 1)
2: Accept if and only if S ∈ T0,n

Procedure compute(`,m):
3: if m− ` > 4 then /* see Figure 9.5(a) */
4: compute(`, `+m

2)

5: compute(`+m
2 ,m)

6: complete(`, `+m
2 , `+m

2 ,m)

Procedure complete(`,m, `′,m′), which requires m− ` = m′ − `′:
7: if m− ` > 1 then /* see Figure 9.5(b) */
8: denote B = (`, `+m

2 , `
′+m′

2 ,m′), B′ = (`+m
2 ,m, `′, `

′+m′

2), C = (`+m
2 ,m, `′, `

′+m′

2),
D = (`, `+m

2 , `′, `
′+m′

2), D′ = (`+m
2 ,m, `

′+m′

2 ,m′), E = (`, `+m
2 , `

′+m′

2 ,m′)
9: complete(C)

10: PD = PD ∪ (TB × TC)
11: complete(D)
12: PD′ = PD′ ∪ (TC × TB′)
13: complete(D′)
14: PE = PE ∪ (TB × TD′)
15: PE = PE ∪ (TD × TB′)
16: complete(E)
17: else if m− ` = 1 and m < `′ then
18: T`,`′ = f(P`,`′)
19: else if m− ` = 1 and m = `′ then
20: T`,`+1 = {A |A→ a`+1 ∈ R}

A2

0

(a)

n-1

m

2
 +m

0 m2
 +m

0

n-1

m

2
 +m

'

m'

2
 '+m'

0 m m''2
 +m

2
 '+m'

n-1
(b)

A ’

A B
B

B’

C
D

D’
E

Figure 9.5: (a) Matrix partition in compute(`,m); (b) matrix partition in complete(`,m, `′,m′).

12 A. Okhotin, “Formal grammars” (chapter 9 draft, September 30, 2014)

Lemma 9.2. Let ` < m 6 `′ < m′, where m − ` = m′ − `′ is a power of two, and assume that
Ti,j = {A | ai+1 . . . aj ∈ L(A)} for all i and j with ` 6 i < j < m, as well as for all i, j with
`′ 6 i < j < m′. Furthermore, assume that, for all ` 6 i < m and `′ 6 j < m′,

Pi,j = { (B,C) | ∃k (m 6 k < `′) : ai+1 . . . ak ∈ L(B), ak+1 . . . aj ∈ L(C)}.

Then complete(`,m, `′,m′) returns with Ti,j = {A | ai+1 . . . aj ∈ L(A)} for all ` 6 i < m and
`′ 6 j < m′.

Proof. Induction on m− `.
Basis I: m − ` = 1 and m = `′. Then the algorithm has to handle a single element T`,`+1,

and this element is correctly computed in line 20.
Basis II: m − ` = 1 and m < `′. Again, there is only one element to compute, and

the current value of P`,`′ is { (B,C) | ∃k (` < k < `′) : a`+1 . . . ak ∈ L(B), ak+1 . . . a`′ ∈
L(C)} = { (B,C) | a`+1 . . . a`′ ∈ L(B)L(C)}. Then line 18 of complete() computes f(P`,`′) =
{A | a`+1 . . . a`′ ∈ L(A)} and thus sets T`,`′ correctly.

Induction step. Let ` < m 6 `′ < m′ with m − ` = m′ − `′ > 1 and assume that
complete(`1,m1, `2,m2) works correctly form1−`1 = m2−`2 < m−`. Consider the computation
of complete(`,m, `′,m′), which begins with the submatrices B and B′ of T already computed, as
in Figure 9.4(b).

The first call to complete(`+m
2 ,m, `′, `

′+m′

2) in line 9 requires that the current value of each
Pi,j with `+m

2 6 i < m and `′ 6 j < `′+m′

2 (that is, in the C-submatrix) is { (B,C) | ∃k (m 6
k < `′) : ai+1 . . . ak ∈ L(B), ak+1 . . . aj ∈ L(C)}, which is true by the assumption. Then, by the
induction hypothesis, this call to complete() computes all values of T in the submatrix C.

The call to product() in line 10 adds to each Pi,j with ` 6 i < `+m
2 and `′ 6 j < `′+m′

2 (in the
submatrix D), all pairs (B,C) with ai+1 . . . ak ∈ L(B), ak+1 . . . aj ∈ L(C) and `+m

2 6 k < m.
Taking into account that all such pairs with m 6 k < `′ were already there by the assumption,
Pi,j now contains these pairs for all `+m

2 6 k < `′. Then the induction hypothesis is applicable
to the subsequent call to complete(`, `+m

2 , `′, `
′+m′

2) in line 11, and so it computes all values of
T in the D-submatrix.

Symmetrically, the next lines 12–13 compute all Ti,j with `+m
2 6 i < m and `′+m′

2 6 j < m′,
that is, the submatrix D′.

At this moment, the elements Pi,j with ` 6 i < `+m
2 and `′+m′

2 6 j < m′ (that is. the
E-submatrix of P) contain all pairs (B,C) with ai+1 . . . ak ∈ L(B), ak+1 . . . aj ∈ L(C) and
m 6 k < `′. The subsequent line 14 adds to each Pi,j all pairs with `+m

2 6 k < m, and
line 15 adds pairs with `′ 6 k < `′+m′

2 . With these additions, each Pi,j contains all pairs (B,C)

satisfying ai+1 . . . ak ∈ L(B) and ak+1 . . . aj ∈ L(C) for some `+m
2 6 k < `′+m′

2 . All conditions
to call complete(`, `+m

2 , `
′+m′

2 ,m′) are now fulfilled, and, by the induction hypothesis, line 16
constructs all elements Ti,j with ` 6 i < `+m

2 . This is the last remaining submatrix E , and now
Ti,j is computed for all ` 6 i < m and `′ 6 j < m′, which completes the proof.

Lemma 9.3. The procedure compute(`,m), executed on any such ` and m that m− ` is a power
of two, returns with Ti,j = {A | ai+1 . . . aj ∈ L(A)} for all ` 6 i < j < m.

Proof. Induction on m− `.
The base case is m − ` = 2, in which the procedure compute() makes no recursive calls to

itself, and line 6 calls complete(`, `+ 1, `+ 1, `+ 2). The pre-conditions for calling complete are
met, because there exist no elements Ti,j with ` 6 i < j < ` + 1 or with ` + 1 6 i < j < ` + 2,
and no numbers k with ` + 1 6 k < ` + 1. Hence, by Lemma 9.2, this call results in T`,`+1

correctly computed (which will actually be done in line 20). Since this is the only element Ti,j
with ` 6 i < j < m = `+ 2, the lemma holds for this case.

Tabular parsing 13

If m − ` > 4, then compute() will first call itself to compute the values of Ti,j for all ` 6
i < j < `+m

2 and for all `+m
2 6 i < j < m. Then, when complete(`, `+m

2 , `+m
2 ,m) is called, the

condition on Ti,j in Lemma 9.2 is satisfied. The second condition of the lemma is that each Pi,j

contains all pairs (B,C) corresponding to some k with `+m
2 6 k < `+m

2 , and since there are no
such values of k, this condition is satisfied as well. Therefore, Lemma 9.2 is applicable to this
call, and it asserts that Ti,j will be correctly set for all ` 6 i < `+m

2 and `+m
2 6 j < m, which

are all the remaining values of i and j.

In order to estimate the running time of the algorithm, it would be sufficient to use the
well-known general solutions of recurrence relations. However, in order to understand what the
algorithm actually does, it is more useful to determine, exactly how many times the procedures
compute() and complete() are called for subproblems of each size, and how many products of
matrices of each size get computed.

Lemma 9.4. Let the input string be of length 2k − 1. Then, in the computation of the main
procedure,

i. for each i ∈ {0, . . . , k − 1}, compute(`,m) with m− ` = 2k−i is called exactly 2i times,

ii. for each i ∈ {1, . . . , k − 1}, complete(`,m, `′,m′) with m − ` = 2k−i is called exactly
22i−1 − 2i−1 times,

iii. for each i ∈ {2, . . . , k}, product() is called for submatrices of size 2k−i × 2k−i exactly
22i−1 − 2i times.

Proof. The first claim is proved by an obvious induction on i, and the proof can be safely omitted.
Turning to the second claim, the induction here is also rather simple, and proceeds as follows.

For succinctness, the phrase “complete() of size s” shall refer to any calls to the procedure
complete(`,m, `′,m′) with m − ` = s. Then, as the base case, i = 1, a call to complete() of
size 2k−1 is made only once, from the top-level compute(0, 2k), and accordingly 22i−1 − 2i−1 =
21 − 20 = 1. For the induction step, assume that complete() of size 2k−i is called 22i−1 − 2i−1

times, and consider the calls to complete() of size 2k−i−1. First, the procedure complete() of size
2k−i−1 is called 4 times from each instance of complete() of size 2k−i, and secondly, it is called
once from each instance of compute(`,m) with m− ` = 2k−i. In total, this sums up to

4 · (22i−1 − 2i−1) + 1 · 2i = 22(i+1)−1 − 2(i+1)−1

calls, as claimed.
Finally, each call to complete() of size 2k−(i−1) makes four calls to product() for matrices

of size 2k−i × 2k−i, and these are all the matrix products computed by the algorithm. Hence,
product() is called for 2k−i × 2k−i matrices 4 · (22(i−1)−1 − 2i−2) = 22i−1 − 2i times.

According to these calculations, the time spent on matrix multiplication dominates the run-
ning time, which leads to the following estimation of the algorithm’s complexity.

Theorem 9.1. Given a Boolean grammar G in binary normal form and a string of length n,
Algorithm 9.5 constructs the parsing table T for this grammar and this string in time O

(
|G| ·

BMM(n) log n
)
, where BMM(n) is the time needed to multiply two n × n Boolean matrices.

Assuming BMM(n) = n2+Ω(1), the complexity is Θ
(
|G| · BMM(n)

)
.

Proof. Assume that n = 2k − 1. If n + 1 is not a power of two, then one can construct the
parsing table for a padded string, and then use only its relevant entries. The correctness of the
algorithm is asserted by Lemma 9.3, according to which, the call to compute(0, 2k) in line 1 of
the main procedure calculates all Ti,j with 0 6 i < j < 2k.

14 A. Okhotin, “Formal grammars” (chapter 9 draft, September 30, 2014)

In order to estimate the running time, by Lemma 9.4, it is sufficient to sum up the time used
for matrix multiplication. Let BMM(n) = nω · f(n), where ω > 2 and f(n) = no(1). According
to Lemma 9.4(iii), for every i ∈ {2, . . . , k}, the procedure product() is called 22i−1 − 2i < 22i

times for matrix size 2k−i, and calculates C = O(|G|) products of Boolean submatrices of size
2k−i × 2k−i. The total number of operations is thus estimated as follows.

C

k∑
i=2

22iBMM(2k−i) = C

k∑
i=2

22i2ωk−ωif(2k−i) = C · 2ωk
k∑

i=2

2(2−ω)if(2k−i) 6

6 C · 2ωkf(2k)

k∑
i=2

2(2−ω)i = C · BMM(2k)

k∑
i=2

2(2−ω)i

It remains to estimate the sum. Under the assumption that ω > 2, it is bounded by a constant
as a convergent geometric series.

k∑
i=2

2(2−ω)i 6
∞∑
i=2

2(2−ω)i =
22(2−ω)

1− 22−ω ,

Therefore, the total number of operations is O
(
|G| · BMM(2k)

)
= O

(
|G| · BMM(n)

)
.

On the other hand, if ω = 2, then

k∑
i=2

2(2−ω)i =

k∑
i=2

20 = k − 1,

leading to the upper bound O
(
|G| · BMM(2k) · k

)
= O

(
|G| · BMM(n) log n

)
.

9.2.5 Constructing a parse tree

For an ordinary grammar, a tree is constructed in square time from the table Ti,j by Al-
gorithm 9.3 in Section 9.1.2. For a Boolean grammar, Algorithm 9.4 can create a parse tree
from Ti,j as well, but this requires cubic time, and thus negates the complexity improvements in
Algorithm 9.5.

In order to construct a parse tree for a Boolean grammar in subcubic time, Algorithm 9.5 is
augmented to construct the tree along with the parsing table, as follows. The sets Pi,j ⊆ N ×N
are replaced with functions P ′i,j : N × N → {0, 1, . . . , n}, where P ′i,j(B,C) = k > 0 indicates
that ai+1 . . . ak ∈ LG(B) and ak+1 . . . aj ∈ LG(C), that is, the substring may be split as B · C
with the splitting position k. Whereas the original sets Pi,j were obtained by Boolean matrix
multiplication, calculating the splitting positions for P ′i,j is the problem of finding witnesses
for Boolean matrix multiplication, solved by the algorithm by Alon and Naor [2], which uses
O(M(n) log5 n) operations in a finite ring, whereM(n) is the number of ring operations for matrix
multiplication. Using this procedure instead of the standard Boolean matrix multiplication in
Algorithm 9.5, yields an algorithm for constructing a parse tree in time O(|G| · nω).

Lower bounds on matrix multiplication based on the complexity of parsing. Proposed as an
open problem by Harrison [5, Problem 12.7.7]. Implemented by Lee.

9.3 Square-time parsing for unambiguous grammars

The basic cubic-time parsing algorithm has a variant, discovered by Kasami and Torii [7], that
works in square time on any unambiguous grammar. This algorithm also applies for conjunctive
and Boolean grammars, and is presented in the version for Boolean grammars.

Tabular parsing 15

0

n-1

0

k∈T'j[C]

j

i∈T'k[B]

k

k

B

C

i

j

Figure 9.6: How the Kasami–Torii algorithm (Algorithm 9.6) finds all substrings ending in the
position j representable as a concatenation BC. ***DRAFT***

This performance increase is achieved by using a different data structure to represent the
same table T ∈ (2N)n×n, with

Ti,j = {A ∈ N | ai+1 . . . aj ∈ LG(A)}.

The new data structure is a two-dimensional table T ′, indexed by positions in the input and
nonterminals. Each entry of this table holds a set of positions in the input string. The element
corresponding to a position k (1 6 k 6 n) and a nonterminal A ∈ N is denoted by T ′k[A], and
its intended value is

T ′j [A] = { i | ai+1 . . . aj ∈ LG(A)},

that is, T ′j [A] should contain the initial positions of all substrings generated by A, which end at
the k-th position. Then, accordingly, i ∈ T ′j [A] if and only if A ∈ Ti,j . The entire string a1 . . . an
is in L(G) if and only if the position 0 is in T ′n[S]. Each set T ′j [A] is being stored in memory as
a list in an ascending order.

The algorithm processes the input string from left to right: after reading every next symbol
aj , it calculates the sets T ′j [A] for all A ∈ N . For each j, this is done along with determining
all concatenations ai+1 . . . ak · ak+1 . . . aj , where ai+1 . . . ak ∈ LG(B) and ak+1 . . . aj ∈ LG(C) for
some positions i, k and for some conjunct BC in any rule of the grammar. These concatenations
are then stored in the variables Pi,j ⊆ N ×N , which are eventually used to insert the element i
in the lists T ′j [A].

The key idea of the algorithm is the particular way, in which these sets Pi,j are filled. The
algorithm performs lookups of the following form: in search for a conjunct BC, first, it traverses
the list T ′j [C] and reads each position k from this list; secondly, for every such position k, it
traverses the list T ′k[B] and considers each position i in there; and thirdly, for every such i,
it adds the pair (B,C) into Pi,j . In this way, if the lists for a particular string are sparsely
populated, then the algorithm will have to make only as few steps as the number of actual
concatenations, rather than look for concatenations in all possible places. And if the grammar
is unambiguous, one can prove that there are only O(n2) concatenations in total, and that the
statement in the innermost loop of the algorithm shall be executed at most O(n2) times.

The purpose of each j-th iteration of the outer loop (line 2) is to determine, for all A ∈ N ,
the membership in LG(A) of substrings of the input string ending at its j-th position. This
information is stored in T ′j [A]. The first nested loop in lines 3–7 handles substrings of length 1,
that is, it records in T ′j [A] whether aj is in LG(A). Substrings of greater length ending at the
j-th position are processed in the second nested loop by k (line 9).

16 A. Okhotin, “Formal grammars” (chapter 9 draft, September 30, 2014)

Algorithm 9.6 The Kasami–Torii parsing algorithm for Boolean grammars
Let G = (Σ, N,R, S) be a Boolean grammar in the Chomsky normal form, and let P̂ =
{BC | there is a conjunct BC in some rule}. For every P ⊆ P̂ , define

f(P) = {A | ∃A→ B1C1& . . .&B`C`&¬D1E1& . . .&¬DmEm&¬ε ∈ R,
such that (B1, C1), . . . , (B`, C`) ∈ P and (D1, E1), . . . , (Dm, Em) /∈ P}

Let w = a1 . . . an, where n > 1 and ai ∈ Σ, be an input string. For each j ∈ {1, . . . , n}, let T ′j [A]
be a variable ranging over subsets of {0, . . . , j − 1}; for each i ∈ {0, . . . , n− 1}, let a variable Pi

range over subsets of P̂ .
1: let T ′j [A] = ∅ for all j = 1, . . . , n and A ∈ N
2: for j = 1 to n do
3: for all A ∈ N do
4: if A→ aj ∈ R then
5: T ′j [A] = {j − 1}
6: else
7: T ′j [A] = ∅
8: let Pi = ∅ for all i (0 6 i < j − 1)
9: for k = j − 1 to 1 do

10: for all (B,C) ∈ P̂ do
11: if k ∈ T ′j [C] then
12: for all i ∈ T ′k[B] do
13: Pi = Pi ∪ {(B,C)}
14: for all A ∈ f(Pk) do
15: T ′j [A] = T ′j [A] ∪ {k − 1}
16: accept if and only if 0 ∈ T ′n[S]

Each T ′j [A] is stored as a list, with elements sorted in an ascending order. The operations on
this data structure are implemented as follows:

Lines 1, 5 and 7: A one-element list or an empty list is created.

Line 11: The first element in the list is checked. If it is not k, it is assumed that k is not in the
list.

Line 12: The list is traversed.

Line 15: The new element is inserted in the beginning of the list.

Line 16: As in line 11, only the first element is checked.

Tabular parsing 17

This loop constructs an auxiliary data structure P : for each i ∈ {0, . . . , j−2}, Pi is meant to
contain all conjuncts BC, for which the substring beginning at the position i+ 1 and ending at
the position j is in LG(BC). Every k-th iteration of this loop, denoted (j, k), considers substrings
of various length starting at any position i+ 1 ∈ {1, 2, . . . , k} and ending at the position j. The
goal is to determine all such substrings, which belong to LG(BC) for some BC ∈ P̂ , and in
which the middle point in their partition into u ∈ LG(B) and v ∈ LG(C) is exactly k + 1, that
is, the first part u ends at the position k and the second part v starts at the position k + 1.
These substrings uv are identified by first considering the appropriate unsigned conjunct, then
checking the membership of the second substring in LG(C) (line 11), and finally by enumerating
all appropriate first parts using the data in T ′k[B].

This is used to fill the elements Pk−1, Pk−2, . . . , P0, with appropriate conjuncts. An element
Pk−1 gets completely filled in course of iteration (j, k), and at this point the set of nonterminals
generating the substring starting from the position k and ending at the position j can be obtained
as f(Pk−1), which is done in lines 14–15.

To verify the algorithm’s correctness, there are three properties to be established: first, that
the given implementation of T ′j [A] by lists faithfully represents the high-level set operations.
Second, it has to be shown that the algorithm is a correct recognizer, that is, it accepts w if and
only if w ∈ L(G). Third, it remains to demonstrate that the algorithm works in time O(n2) on
every unambiguous grammar.

Let us see that, indeed, the lists T ′j [A] stay sorted in course of the computation, and the tests
in lines 11, 16 and the insertion in line 15 can be implemented as described.

Lemma 9.5. Each list T ′j [A] always remains sorted. Each time the algorithm checks the condition
in line 11, every set T ′j [A] does not contain elements less than k. Each time the algorithm is
about to execute line 15, the set T ′j [A] does not contain elements less than k.

Proof. An element k−1 (1 6 k < j) can be added to T ′j [A] only at the iteration (j, k). Hence, in
the beginning of each iteration (j, k) the current value of T ′j [A] is a subset of {k, k+1, . . . , j−1}.
As a result, if T ′j [A] is sorted before the assignment in line 15, it remains sorted after the
assignment. All three claims follow.

Let us continue with the correctness statement of the algorithm, which claims what values
should the variables have at certain points of the computation.

To unify the notation, let us refer to the point before the iteration j = 1, that is, to the very
beginning of the execution, as “after the iteration 0”. Similarly, the point before the iteration
(j, k = j − 1), that is, inside iteration j right before the loop by k is entered, will be referred to
as “after the iteration (j, j)”. Then the statement of correctness can be succinctly formulated as
follows:

Lemma 9.6 (Correctness of Algorithm 9.6). For every Boolean grammar in the binary normal
form, in the computation of the above algorithm on a string w ∈ Σ+,

i. after iteration j, for each A ∈ N and for each t ∈ {1, . . . , j}, the set T ′t [A] equals

{ i | 0 6 i < t and ai+1 . . . at ∈ LG(A)}; (9.1)

ii. after iteration (j, k), every T ′j [A] with A ∈ N equals

{ i | k − 1 6 i < j and ai+1 . . . aj ∈ LG(A)}; (9.2)

iii. after iteration (j, k), every Pi with 0 6 i < j equals

{ (B,C) ∈ P̂ | ∃` (k 6 ` < j) : ai+1 . . . a` ∈ L(B) and a`+1 . . . aj ∈ L(C)}. (9.3)

18 A. Okhotin, “Formal grammars” (chapter 9 draft, September 30, 2014)

Lemma 9.7 (Algorithm 9.6 on unambiguous grammars). Assume that all concatenations in
G are unambiguous, and let w be an n-symbol input string. Then the assignment statement
Pi = Pi ∪ {BC} in the inner loop is executed at most |P̂ | · n2 times.

Proof. Let us prove that for every j, for every concatenation (B,C) ∈ P̂ and for every i there
exists at most one number k, such that iteration (j, k,BC, i) of four nested loops is executed.

Suppose there exist two such numbers, k and k′. For the inner loop in lines 12–13 to be
executed, both k and k′ have to be in T ′j [C]. Then, by Lemma 9.6(ii),

ak+1 . . . aj ∈ L(C) and (9.4a)
ak′+1 . . . aj ∈ L(C). (9.4b)

Furthermore, for the corresponding iterations of the inner loop to be executed, i must be both
in T ′k[B] and in T ′k′ [B]. By Lemma 9.6(i), this means the following:

ai+1 . . . ak ∈ L(B), (9.5a)
ai+1 . . . ak′ ∈ L(B). (9.5b)

Combining (9.5a) with (9.4a) and (9.5b) with (9.4b), one obtains two partitions of ai+1 . . . aj
as u · v, where u ∈ L(B) and v ∈ L(C). Since the concatenation BC is unambiguous by
assumption, there is at most one such partition. Therefore, the constructed partitions are the
same, that is, k = k′.

Theorem 9.2. For every Boolean grammar G = (Σ, N,R, S) in binary normal form and for
every input string w ∈ Σ∗, Algorithm 9.6 accepts if and only if w ∈ L(G). Implemented on
a random access machine, it terminates after O(n3) elementary steps, where n = |w|, or after
O(n2) elementary steps, if the grammar is unambiguous.

Proof. The correctness of the algorithm is given by Lemma 9.6(i): for j = n and A = S, the
final value of T ′j [A] is

T ′n[S] = { i | 0 6 i < n and ai+1 . . . an ∈ L(G)},

and therefore 0 ∈ T ′n[S] if and only if a1 . . . an ∈ L(G).
Next, note that each statement of the algorithm is executed in a constant number of machine

instructions. Indeed, the only data of non-constant size are the lists T ′j [A], and the implementa-
tion notes in the end of Algorithm 9.6 cover each reference to these variables in the algorithm.
Then the cubic time upper bound for the execution time is evident.

These are lines 14–15 that are responsible for cubic time, and each of the rest of the statements
is visited O(n2) times in any computation. Since, by Lemma 9.7, on any unambiguous grammar
lines 14–15 are visited O(n2) times as well, this implies the algorithm’s square-time performance
on any unambiguous grammar.

9.4 Parsing for pair-wrapping grammars

9.4.1 The direct O(n6)-time algorithm

By Vijay-Shanker and Joshi.

Tabular parsing 19

Assume a pair-wrapping grammar G = (Σ, N,R, S) in a normal form, where each rule is of
the following form.

A→ BC (B,C ∈ N)

A→ B : ε (B ∈ N)

A→ ε :C (C ∈ N)

A→ a : ε (a ∈ Σ)

A→ ε : a (a ∈ Σ)

Given an input string w = a1 . . . an, the algorithm constructs a four-dimensional array T ,
with

Ti,k,`,j = {A ∈ N | ai+1 . . . ak : a`+1 . . . aj ∈ LG(A)}

for all 0 6 i < k 6 ` < j 6 n.
Base case (strings with a gap, of combined length 1).

Ti,i+1,j,j = {A ∈ N |A→ ai+1 : ε ∈ R},
Ti,i,j−1,j = {A ∈ N |A→ ε : aj ∈ R},

for all i, j with 0 6 i < j 6 n.
Transition to longer strings with a gap.

Ti,k,`,j = f
(k⋃

s=i

j⋃
t=`

Ti,s,t,j × Ts,k,`,t
)
∪f ′
(k⋃

s=i

Ti,s,s,k

)
︸ ︷︷ ︸

if ` = j

∪f ′′
(j⋃

t=`

T`,t,t,j

)
︸ ︷︷ ︸

if i = k

,

where the function f : 2N×N → 2N is defined by A ∈ f(P) if and only if there is a rule A→ BC
with (B,C) ∈ P .

f ′, f ′′ defined similarly.
Total: Θ(n4) elements, Θ(n2) operations for each. Hence, running time Θ(n6).

9.4.2 Reduction to matrix multiplication

Parsing in time O(n2ω) by Rajasekaran and Yooseph [12]. (that is, the time of multiplying
n2 × n2 matrices)

Bibliography

[1] L. Adleman, K. S. Booth, F. P. Preparata, W. L. Ruzzo, “Improved time and space bounds
for Boolean matrix multiplication”, Acta Informatica 11:1 (1978), 61–70.

[2] N. Alon, M. Naor, “Derandomization, witnesses for Boolean matrix multiplication and con-
struction of perfect hash functions”, Algorithmica, 16:4–5 (1996), 434–449.

[3] V. L. Arlazarov, E. A. Dinic, M. A. Kronrod, I. A. Faradzhev, “On economical construction
of the transitive closure of an oriented graph”, Soviet Mathematics Doklady, 11 (1970),
1209–1210.

[4] S. L. Graham, M. A. Harrison, W. L. Ruzzo, “An improved context-free recognizer”, ACM
Transactions of Programming Languages and Systems, 2:3 (1980), 415–462.

[5] M. Harrison, Introduction to Formal Language Theory, Addison-Wesley, 1978.

[6] T. Kasami, “An efficient recognition and syntax-analysis algorithm for context-free lan-
guages”, Report AF CRL-65-758, Air Force Cambridge Research Laboratory, USA, 1965.

[7] T. Kasami, K. Torii, “A syntax-analysis procedure for unambiguous context-free grammars”,
Journal of the ACM, 16:3 (1969), 423–431.

[8] L. Lee, “Fast context-free grammar parsing requires fast Boolean matrix multiplication”,
Journal of the ACM, 49:1 (2002), 1–15.

[9] A. Okhotin, “Boolean grammars”, Information and Computation, 194:1 (2004), 19–48.

[10] A. Okhotin, “Unambiguous Boolean grammars”, Information and Computation, 206 (2008),
1234–1247.

[11] A. Okhotin, “Parsing by matrix multiplication generalized to Boolean grammars”, Theoret-
ical Computer Science, 516 (2014), 101–120.

[12] S. Rajasekaran, S. Yooseph, “TAL recognition in O(M(n2)) time”, Journal of Computer and
System Sciences, 56:1 (1998), 83–89.

[13] V. Strassen, “Gaussian elimination is not optimal”, Numerische Mathematik, 13 (1969),
354–356.

[14] L. G. Valiant, “General context-free recognition in less than cubic time”, Journal of Com-
puter and System Sciences, 10:2 (1975), 308–314.

[15] D. H. Younger, “Recognition and parsing of context-free languages in time n3”, Information
and Control, 10 (1967), 189–208.

20

http://dx.doi.org/10.1007/BF00264600
http://dx.doi.org/10.1007/BF00264600
http://dx.doi.org/10.1007/BF01940874
http://dx.doi.org/10.1007/BF01940874
http://dx.doi.org/10.1145/357103.357112
http://dx.doi.org/10.1145/321526.321531
http://doi.acm.org/10.1145/505241.505242
http://dx.doi.org/10.1016/j.ic.2004.03.006
http://dx.doi.org/10.1016/j.ic.2008.03.023
http://dx.doi.org/10.1016/j.tcs.2013.09.011
http://dx.doi.org/10.1006/jcss.1997.1537
http://dx.doi.org/10.1007/BF02165411
http://dx.doi.org/10.1016/S0022-0000(75)80046-8
http://dx.doi.org/10.1016/S0019-9958(67)80007-X

Index

Adleman, Leonard Max (b. 1945), 8
Arlazarov, Vladimir L’vovich (b. 1939), 8

Booth, Kellogg Speed, 8

Cocke, John (1925–2002), 2

Dinitz, Yefim Abramovich, 8

Faradzhev, I. A., 8
Fischer, Patrick Carl (1935–2011), 8

Harrison, Michael Alexander, 15

Joshi, Aravind Krishna (b. 1929), 18

Kasami, Tadao (1930–2007), 2, 15, 16
Kronrod, Mikhail Alexandrovich, 8

Lee, Lillian Jane, 15

Paterson, Michael Stewart, 8
Preparata, Franco P. (b. 1935), 8
Probert, Robert L., 8

Rajasekaran, Sanguthevar (b. 1957), 19
Ruzzo, Walter Larry, 8

Strassen, Volker (b. 1936), 7

Torii, Koji, 15, 16

Valiant, Leslie Gabriel (b. 1949), 11
Vijay-Shanker, K., 18

Williams, Richard Ryan, 9

Yooseph, Shibu, 19
Younger, Daniel Haven, 2

21

	Tabular parsing
	Cubic-time parsing
	The algorithm
	Constructing a parse tree

	Parsing through matrix multiplication
	An opportunity to multiply matrices
	Fast matrix multiplication
	A combinatorial method of Boolean matrix multiplication
	Recursive partition of matrices
	Constructing a parse tree

	Square-time parsing for unambiguous grammars
	Parsing for pair-wrapping grammars
	The direct O(n6)-time algorithm
	Reduction to matrix multiplication

	Bibliography
	Name index

