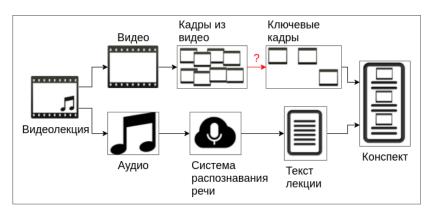
Автоматическая генерация конспекта по видеокурсу stepik.org

Чаркин Константин

руководитель: Николай Иванович Вяххи

СПб АУ НОЦНТ РАН


2017 г.

Мотивация

- Stepik.org образовательная платформа, на которой есть онлайн-курсы, в том числе видеокурсы.
- У видеокурсов есть особенности, из-за которых их освоение проходит значительно лучше при наличии у студентов конспекта.
- Просить преподавателей предоставить конспект их курса не хотим, т.к. это усложнит им создание курсов
- Решение генерировать конспекты автоматичеки

Введение

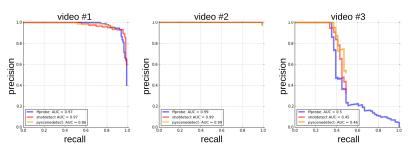
Идея автоматической генерации конспекта

Ключевые кадры – минимальный набор кадров, на которых есть вся полезная информация.

Цель и задачи

Цель:

• Сгенерировать и предоставить пользователям доступ к конспектам видеокурсов

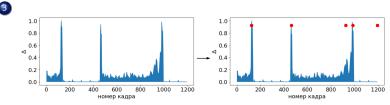

Задачи:

- Реализовать извлечение ключевых кадров
- Реализовать распознавание аудиоряда
- Собрать результаты предыдущих задач в единый документ
- Предоставить пользователям доступ к чтению и совместному редактированию этого документа
- Оформить генератор конспектов в виде инструмента удобного для использования, поддержки и развития.

Существующие решения:

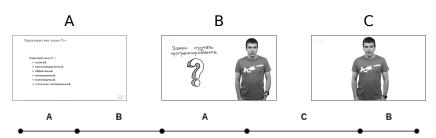
- ffprobe, ffmpeg.org/ffprobe.html
- Shotdetect, johmathe.name/shotdetect.html
- PySceneDetect, pyscenedetect.readthedocs.io

Сравнение:


github.com/albanie/shot-detection-benchmarks

Подходы в исследованиях

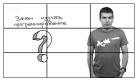
- По типу решаемой задачи:
 - В общем случае
 - G.Ciocca et al., An Innovative Algorithm For Key Frame Extraction In Video Summarization
 - В частном случае
 - A.Ekin et al., Automatic Soccer Video Analysis and Summarization
 - S.X.Ju et al., Summarization of Videotaped Presentations: Automatic Analysis of Motion and Gesture
- По способу решения задачи:
 - Видео это множество кадров кластеризация
 - P.Mundur et al., Keyframe-based video summarization using Delaunay clustering
 - Видео это последовательность кадров сравнение соседних кадров
 - K.Khurana et al., Key Frame Extraction Methodology For Video Annotation
 - H.Zhang et al., Video Parsing and Browsing Using Compressed Data

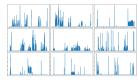

Общая схема извлечения ключевых кадров в случае представления видео в качестве упорядоченной последовательности кадров:

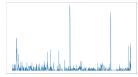
- lacktriangled Исходное видео последовательность кадров: $F_1 o F_2 o F_3 o ... o F_N$
- $oldsymbol{oldsymbol{oldsymbol{eta}}} \Delta(i)$ разница между F_i и F_{i+1}

 На основании графика из пункта 3 делается вывод о том, какие кадры следует добавить во множество ключевых

Анализ видео

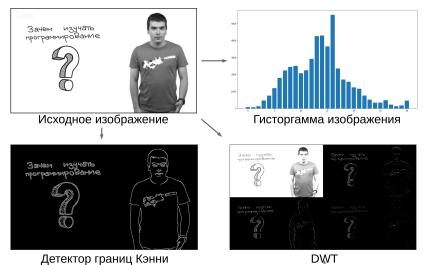

Разобьем видео на интервалы трех типов $(A, B \ \text{и} \ C)$. Разбиение происходит на основе положения людей в кадре.

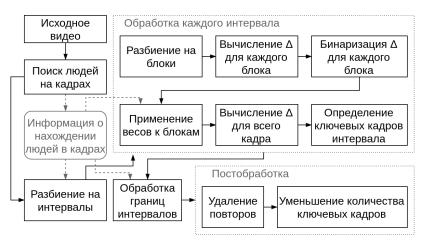

Для поиска людей использовалась библиотека dlib 1 . Будем анализировать каждый интервал независимо от остальных



¹http://dlib.net/

Анализ кадра




- Разбиение кадра на блоки
- Вычисление ∆ для каждого блока

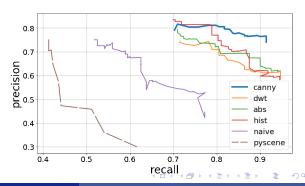
- Бинаризация ∆ для каждого блока
- Вычисление Δ для всего кадра

Вычисление различия кадров.

Схема алгоритма извлечения ключевых кадров

Сравнение

Данные: 20 видеолекций, общая продолжительность ~2 часа.


 $I = \{[x_1, x_1'], [x_2, x_2'], ..., [x_n, x_n']\}$ – разметка: набор интервалов таких, что идеальный конспект – это ровно по 1 кадру из каждого интервала.

F - множество кадров, выданных алгоритмом

T - множество полезных кадров, выданных алгоритмом

$$recall = \frac{|T|}{|I|}$$

$$precision = \frac{|T|}{|F|}$$

Распознавание аудио

Требования:

- Бесплатность
- Распознавание русского языка

Ограничения:

- 1000 запросов в сутки
- 20 секунд на запрос

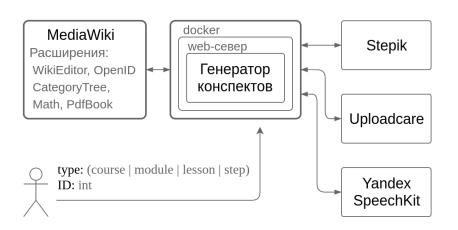
YandexSpeechKit 2

минимум

Нарезать аудио по 20 секунд плохо, т.к. часто слова будут разбиваться на 2 части и неправильно распознаваться.

²www.tech.yandex.ru/speechkit/

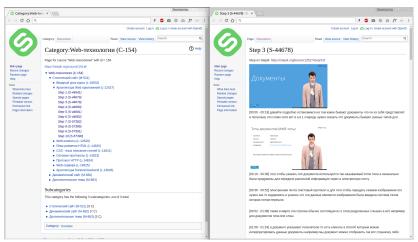
Публикация конспекта


Требования:

- Совместное редактирование
- Разрешения конфликтов
- История изменений
- Система прав доступа
- Поддержка РТЕХ
- Экспорт в pdf
- Поддержка сложной структуры страниц

MediaWiki 3

³www.mediawiki.org


Сервис по генерации конспекта

Результаты. Пример конспекта.

Страница курса

Страница шага

https://wiki.stepik.org

Результаты

- Изучено большое количество исследований по теме извлечения ключевых кадров
- Разработан и реализован алгоритм по извлечению ключевых кадров для задачи генерации конспекта по видеокурсу, который, по результатам проведенного сравнения, работает лучше, чем существующие решения.
- В ходе решения поставленных задач была освоена работа со множеством различных инструментов и сервисов, среди которых YandexSpeechKit, Stepik, Uploadcare, MediaWiki, Docker, OpenCV, dlib и др.
- Реализован сервис по генерации конспектов, который инкапсулирует в себе всю логику по созданию конспектов, предоставляя пользователю максимально простой интерфейс.

Спасибо за внимание!

Q & A