Information Retrieval Offline Evaluation

> Ilya Markov i.markov@uva.nl

University of Amsterdam

Course overview

This lecture

How would you evaluate a search system?

Yandex						
		information retrieval X 🛫	Search			
Web	W	Information retrieval - Wikipedia, the free encyclopedia en.wikipedia.org > Information retrieval *				
Images		Information retrieval (IR) is the activity of obtaining information resources relevant to an information need from a collection of information resources. Searches can be based on full-				
Video		text or other content-based indexing.				
Translate	n.	Information retrieval				
More		en.academic.ru > dic.nst/enwiki/9176 + 1950: The term " information retrieval " appears to have been coined by Calvin Mooers. 1951: Philip Bagley conducted the earliest experiment in computerized document retrieval in a				
	Ψ	Information retrieval - Psychology Wiki - Wikia psychology.wikia.com > wiki/Information_retrieval >				
		Assessment Biopsychology Comparative Cognitive Developmental Language Individual differences Personality Philosophy Social Methods Statistics Clinical Educational Industrial Professional items World psychology .				
	ŃP	Introduction to Information Retrieval				
		Infl. Station Leader 1 - 100000 - 1 - 100000 - 1 - 100000 - 10000000 - 100000000				
	•1)	Information retrieval - Wikiquote en.wikiquote.org > wikinformation_retrieval + Information retrieval is the activity of obtaining information resources relevant to an Information need from a collection of Information resources, and the part of Information science, which suites of these activity.				

Ilya Markov

Taxonomy of evaluation approaches

Diane Kelly, "Methods for Evaluating Interactive Information Retrieval Systems with Users"

2 Metrics

Outline

1 Test collections

- Components of test collections
- Evaluation campaigns

2 Metrics

3 Summary

1 Test collections

Components of test collections

Metrics

Summary

What components should a test collection comprise?

Picture taken from http://nationwidepathology.co.uk

Ilya Markov

What components should a test collection comprise?

- Test documents
- Test queries
- Ground truth

Use a document collection that is representative for the application in terms of the number, size, and type.

- Where can we get test queries?
 - Query log
 - Example queries from potential users
- How many queries should we get?
 - The more the better
 - At least 50

Ground truth

wars in netherlands in 17th century

Anglo-Dutch Wars - Wikipedia, the free encyclopedia https://en.wikipedia.org/wiki/Anglo-Dutch Wars -

The Anglo-Dutch wars (Dutch: Engels-Nederlandse Oorlogen or Engelse Zeeoorlogen) were ... A view of the Dutch factory at Ambon, early to mid-17th century.

First Anglo-Dutch War - Wikipedia, the free encyclopedia https://en.wikipedia.org/wiki/First_Anglo-Dutch_War -

1654, depicts the final battle of the First Anglo-Dutch War. ... By the middle of the 17th century the Dutch had built by far the largest mercantile fleet in Europe, ...

1652-1674 Anglo-Dutch Wars - Rijksmuseum

https://www.rijksmuseum.n/en/...dutch.../1652-1674-anglo-dutch-wars
In the 17th century, England fought three wars with the Republic in a little over twenty
years. Rivalry between the two mercantile nations and European power ...

The Anglo-Dutch wars - Het Geheugen van Nederland www.geheugenvannederland.nl/?/en/collecties/nederland_engeland/... •

(Dutch-English (Naval) Wars). Three of them were fought in the seventeenth century, one in the eighteenth. Trade conflicts and naval supremacy were at stake in ...

Anglo-Dutch Wars | European history | Britannica.com www.britannica.com/topic/Anglo-Dutch-Wars -

Jul 4, 2014 - Anglo-Dutch Wars, also called Dutch Wars, Dutch Engelse Oorlogen, (English Wars), the four 17th- and 18th-century naval conflicts between ...

X

Relevance judgements

- Where can we get relevance judgements?
 - Users
 - Independent judges
 - Crowdsourcing
- How many relevance judgements should we get?
 - The more the better
 - More judged queries, fewer judgements per query
 - Multiple judges
- Graded relevance
 - 4 perfect
 - 3 excellent
 - 2 good
 - 1 fair
 - 0 bad

Pooling

- Impossible to obtain judgments for all documents
- Depth-k pooling
 - consider multiple search systems (by participants)
 - 2 consider top-k results from each system
 - ③ remove duplicates
 - ④ present documents to judges in a random order
- Produces a large number of judgments for each query
- Still incomplete
- Other methods
 - Automatic evaluation
 - Minimum test collection

Multiple assessors

Inter-assessor agreement, Cohen's kappa coefficient

$$\kappa = \frac{P(A) - P(E)}{1 - P(E)}$$

- Expected chance agreement P(E)
- Values

- 0.67 0.8 acceptable
- $\bullet\ < 0.67 low$

• For more than two assessors, average pair-wise coefficients

Components of test collections

Documents

Queries

Judgements

search engine evaluation Amsterdam web search University of Amsterdam information studies

1 Test collections

- Evaluation campaigns

Evaluation campaigns

- Text REtrieval Conference (TREC)
 - US National Institute of Standard and Technology (NIST)
 - http://trec.nist.gov
- Cross-Language Education and Function (CLEF)
 - Mainly European
 - http://www.clef-campaign.org
- NII Test Collections for IR (NTCIR)
 - National Institute of Informatics of Japan (NII)
 - http://research.nii.ac.jp/ntcir/index-en.html
- Российский семинар по Оценке Методов Информационного Поиска (РОМИП)
 - Russian version of TREC
 - http://romip.ru

Text REtrieval Conference (TREC)

http://trec.nist.gov

Ilya Markov

TREC greatest hits

Track	Dataset	Year	Documents	Queries
Ad hoc track	TREC 1–8	1994–1999	1,89 million	450
Web track	WT10G	2000-2001	1,692,096	100
	ClueWeb09	2009–2012	1,040,809,705	200
	ClueWeb12	2013–2014	733,019,372	100
Terabyte track	GOV2	2004–2006	25,205,179	150

NIST assessors

Ilya Markov

Outline

1 Test collections

2

Metrics

- Unranked evaluation
- Ranked evaluation
- User-oriented evaluation
- Evaluating other aspects of search
- Evaluating metrics

3 Summary

Outline

Metrics

• Unranked evaluation

- Ranked evaluation
- User-oriented evaluation
- Evaluating other aspects of search
- Evaluating metrics

Precision and recall

• Precision is the fraction of retrieved items that are relevant

 $Precision = \frac{\#(relevant items retrieved)}{\#(retrieved items)} = P(relevant | retrieved)$

• Recall is the fraction of relevant items that are retrieved

$$\mathsf{Recall} = rac{\#(\mathsf{relevant items retrieved})}{\#(\mathsf{relevant items})} = P(\mathsf{retrieved} \mid \mathsf{relevant})$$

Manning et al., "Introduction to Information Retrieval"

Precision and recall

	Relevant	Non-relevant
Retrieved	true positives (TP)	false positives (FP)
Not retrieved	false negatives (FN)	true negatives (TN)

$$P = \frac{TP}{TP + FP}$$
$$R = \frac{TP}{TP + FN}$$

Manning et al., "Introduction to Information Retrieval"

Ilya Markov

Precision-recall curve

Manning et al., "Introduction to Information Retrieval"

F-measure

• F-measure

$$F = \frac{1}{\alpha \frac{1}{P} + (1 - \alpha) \frac{1}{R}} = \frac{(\beta^2 + 1)PR}{\beta^2 P + R},$$

where
$$\beta^2 = \frac{1-\alpha}{\alpha}$$

• F1-measure ($\alpha = 0.5, \beta^2 = 1$)
 $F_1 = \frac{2PR}{P+R}$

Ilya Markov

Any problems with the metrics so far?

The ranking of items is not taken into account

Outline

Metrics

Unranked evaluation

Ranked evaluation

- User-oriented evaluation
- Evaluating other aspects of search
- Evaluating metrics

Precision and recall

• Precision at rank k

$$P@k = \frac{\#(\text{relevant items at } k)}{k}$$

• Recall at rank k

$$R@k = rac{\#(\text{relevant items at }k)}{\#(\text{relevant items})}$$

Other common metrics

• Reciprocal rank

$$RR = \frac{1}{\text{rank of first relevant item}}$$

• Average precision (AP)

$$AP = \frac{\sum_{d \in rel} P@k_d}{\#(\text{relevant items})}$$

- Average over multiple queries
 - mean P@k
 - In mean R@k
 - MRR
 - MAP

Any problems with the metrics so far?

User search behavior is not taken into account

Outline

Metrics

- Unranked evaluation
- Ranked evaluation

User-oriented evaluation

- Evaluating other aspects of search
- Evaluating metrics

User search behavior

Picture taken from Google-Studie-Betrachtungsverlauf-einer-SERP.pdf

Ilya Markov

Discounted cumulative gain (DCG)

- Graded relevance $R_k \in \{0, 1, 2, 3, 4\}$
- Cumulative gain

$$CG = \sum_{k=1}^{N} (2^{R_k} - 1)$$

• Gain is **discounted** by rank

$$D(k) = \frac{1}{\log(k+1)}$$

Discounted cumulative gain

$$DCG = \sum_{k=1}^{N} \frac{2^{R_k} - 1}{\log(k+1)}$$

Normalized DCG

$$NDCG = \frac{DCG}{DCG_{ideal}}$$

Rank-biased precision (RBP)

- View next item with probability $\boldsymbol{\theta}$
- Stop with probability 1θ
- Probability of looking at rank k

$$P(\text{look at } k) = \theta^{k-1}$$

• Average number of examined items

Avg. exam
$$= \sum_{k=1}^{\infty} k \cdot P(\text{look at } k) \cdot P(\text{stop at } k)$$
$$= \sum_{k=1}^{\infty} k \cdot \theta^{k-1} \cdot (1-\theta)$$
$$= \frac{1}{1-\theta}$$

Rank-biased precision (RBP)

• Utility at rank k

$$U@k = P(\text{look at } k) \cdot R_k = \theta^{k-1} \cdot R_k$$

• Average utility of all results

$$RBP = \frac{\sum_{k=1}^{N} U@k}{Avg. \text{ exam}} = (1-\theta) \cdot \sum_{k=1}^{N} \theta^{k-1} \cdot R_k$$

• θ is usually close to 1

Expected reciprocal rank (ERR)

• Reciprocal rank

$$RR = rac{1}{ ext{rank of first relevant item}}$$

- If an item is relevant (R_k) then stop
- Otherwise $(1 R_k)$, continue with probability θ

Probability of looking at rank k

$$P(ext{look at } k) = \prod_{i=1}^{k-1} (1-R_i) \cdot heta$$

• Probability of reciprocal rank = k

$$P(RR = \frac{1}{k}) = R_k \cdot \prod_{i=1}^{k-1} (1 - R_i) \cdot \theta$$

Expected reciprocal rank (ERR)

• Expected reciprocal rank

$$\begin{aligned} \mathsf{ERR} &= \sum_{k=1}^{N} \frac{1}{k} \cdot \mathsf{P}(\mathsf{RR} = \frac{1}{k}) \\ &= \sum_{k=1}^{N} \frac{1}{k} \cdot \theta^{k-1} \cdot \mathsf{R}_{k} \cdot \prod_{i=1}^{k-1} (1 - \mathsf{R}_{i}) \end{aligned}$$

 ${\ensuremath{\, \bullet \,}}\ \theta$ is usually close to 1

Outline

Metrics

- Unranked evaluation
- Ranked evaluation
- User-oriented evaluation
- Evaluating other aspects of search
- Evaluating metrics

Evaluating other aspects of search

Intent-aware measures

$$M(q) = \sum_i M_i(q) P(i \mid q)$$

- Novelty and diversity: α -nDCG
- Session-based evaluation

Outline

Metrics

- Unranked evaluation
- Ranked evaluation
- User-oriented evaluation
- Evaluating other aspects of search
- Evaluating metrics

Evaluating metrics

- No established methodology
- Metrics for metrics
 - Discriminative power
 - Intuitiveness/concordance
- Correlation with online metrics and experiments

Discriminative power

Metric	Discriminative Power
Precision	50.1~%
Precision2	30.8~%
DCG	48.6~%
ERR	39.3~%
uSDBN	$51.1 \ \%$
EBU	35.1~%
rrDBN	21.1~%
uDCM	34.7 %
rrDCM	26.0~%
uUBM	33.3~%

A. Chuklin et al. "Click model-based information retrieval metrics"

Correlation with online metrics

		-RR			
	Max-	Min-	Mean-	UCTR	PLC
Precision	-0.117	-0.163	-0.155	0.042	-0.027
Precision2	0.026	0.093	0.075	0.092	0.094
DCG	0.178	0.243	0.237	0.163	0.245
ERR	0.378	0.471	0.469	0.199	0.399
EBU	0.374	0.467	0.464	0.198	0.397
rrDBN	0.384**	0.475	0.473	0.194**	0.399^{-1}
rrDCM	0.387**	0.478	0.476	0.194**	0.400^{-1}
uSDBN	0.322**	0.412**	0.407**	0.206**	0.370**
uDCM	0.374**	0.466**	0.463**	$0.198^{}$	0.396**
uUBM	0.377-*	0.469**	0.467**	$0.198^{}$	0.398-*

A. Chuklin et al. "Click model-based information retrieval metrics"

2 Metrics

Offline evaluation summary

- Test collection
 - Test documents
 - Test queries
 - Ground truth
- Metrics
 - Unranked
 - Ranked
 - User-oriented
 - Evaluating metrics

What are the advantages of offline evaluation?

If we have a test collection then...

- Cheap
- Fast
- Reusable

What are the disadvantages of offline evaluation?

- Creating a test collection is expensive
- Actual users are not considered

Materials

- Croft et al., Chapter 8
- Manning et al., Chapter 8
- Evangelos Kanoulas

A Short Survey on Online and Offline Methods for Search Quality Evaluation Proceedings of RuSSIR, 2015

Materials

DCG

Kalervo Järvelin, Jaana Kekäläinen **Cumulated gain-based evaluation of IR techniques** ACM Transactions on Information Systems, 2002

RBP

Alistair Moffat, Justin Zobel

Rank-biased precision for measurement of retrieval effectiveness ACM Transactions on Information Systems , 2008

ERR

Olivier Chapelle, Donald Metlzer, Ya Zhang, Pierre Grinspan **Expected reciprocal rank for graded relevance** Proceedings of CIKM, 2009

Evaluation of metrics

Aleksandr Chuklin, Pavel Serdyukov, Maarten de Rijke Click model-based information retrieval metrics Proceedings of SIGIR, 2013

Hands-on

Course overview

Next lecture

