
Contents

8 Deterministic top-down parsing 2
8.1 LL(k) grammars and parsers . 2

8.1.1 Look-up table construction . 3
8.1.2 Recursive descent . 4

8.2 Normal forms for LL(k) grammars . 5
8.2.1 Elimination of null rules . 5
8.2.2 Greibach normal form . 7

8.3 Limitations of LL(k) grammars . 7
8.3.1 First method: interchangeable substring ahead 7
8.3.2 Second method: unexpected end . 8
8.3.3 Disjoint unions of LL(k) languages . 8

Bibliography 10

Name index 11

1

Chapter 8

Deterministic top-down parsing

8.1 LL(k) grammars and parsers

Top-down parsing approach, according to which a parser begins with the assumption that
the unread input string is syntactically correct, and attempts to verify this fact by traversing the
supposed parse tree of this string, along with reading the input from left to right.

First studied by Lewis and Stearns [4], followed by Kurki-Suonio [3], by Rosenkrantz and
Stearns [5] and by Knuth [2].

A top-down parser attempts to construct a parse tree of an input string, while reading it
from left to right. At every point of its computation, the parser’s memory configuration is a
pair (α, v), where v is the unread portion of the input string uv, which the parser tries to parse
according to the sequence of symbols α = X1 . . . X` ∈ (Σ∪N)∗. The latter sequence is stored in
a stack, so that it can be accessed only from its left side.

In the figure: the configuration of the parser is described by a path in the tree. The read
portion u of the input string has already been parsed according to the subtrees to the left of this
path (that grey area). The nodes on the right border of the path form the stack contents α. The
white area in the tree has not yet been processed by the parser.

At each point of the computation, the parser sees the top symbol of the stack and the first
k symbols of the unread input (known as the look-ahead string), where k > 1 is a constant. If
there is a nonterminal symbol A ∈ N at the top of the stack, determines a rule A → α for this
symbol, pops this symbol, and pushes the right-hand side of the rule onto the stack:

(Aβ, v)
A→α−−−→ (αβ, v)

The rule is chosen by accessing a look-up table Tk : N × Σ6k → R ∪ {−}, which contains either
a rule to apply, or a marker indicating a syntax error.

If the top symbol of the stack is a symbol from the alphabet, the parser checks that the
unread portion of the input begins with the same symbol, and then pops this symbol from the
stack and reads it from the input.

(aβ, av)
read a−−−−→ (β, v)

Example 8.1. Consider the following grammar for the language { ambm+ncn |m,n > 0}.

S → AB
A → aAb | ε
B → bBc | ε

A top-down parser recognizes the string aabbbc as follows.

2

Deterministic top-down parsing 3

u v

α

Figure 8.1: The configuration (α, v) of an LL parser demonstrated on a parse tree.

(S, aabbbc)
S→AB−−−−→ (AB, aabbbc)

A→aAb−−−−−→ (aAbB, aabbbc)
read a−−−−→

(AbB, abbbc)
A→aAb−−−−−→ (aAbbB, abbbc)

read a−−−−→ (AbbB, bbbc)
A→ε−−−→ (bbB, bbbc)

read b−−−−→
(bB, bbc)

read b−−−−→ (B, bc)
B→bBc−−−−−→ (bBc, bc)

read b−−−−→ (Bc, c)
B→ε−−−→ (c, c)

read c−−−−→ (ε, ε)

It is sufficient to let k = 1 and use the following parsing table:

a b c ε

S S → AB S → AB − S → AB
A A→ aAb A→ ε − A→ ε
B − B → bBc B → ε B → ε

For a string w ∈ Σ∗, denote its first k symbols, with k > 0, by

Firstk(w) =

{
w, if |w| 6 k
first k symbols of w, if |w| > k

This definition is extended to languages as Firstk(L) = {Firstk(w) | w ∈ L}.

Definition 8.1. Let k > 1. An ordinary grammar G = (Σ, N,R, S) is said to be LL(k), if, for
all A ∈ N , u, u′ ∈ Σ∗ and v, v′ ∈ Σ∗ with Firstk(v) = Firstk(v

′), if

S =⇒∗ uAβ =⇒ uαβ =⇒∗ uv,
S =⇒∗ u′Aβ′ =⇒ u′α′β′ =⇒∗ u′v′,

then α = α′.

8.1.1 Look-up table construction

For a grammar G = (Σ, N,R, S) construct Firstk(A) = Firstk(LG(A)) for all A ∈ N . Let
Firstk(a) = {a}.

Definition 8.2. A string v ∈ Σ∗ is said to follow X ∈ Σ ∪ N , if S =⇒∗ γXv for some
γ ∈ (Σ ∪N)∗.

4 A. Okhotin, “Formal grammars” (chapter 8 draft, September 24, 2014)

k

S

A

FIRSTk(A)

k

FOLLOWk(A)

Figure 8.2: Strings in Firstk(A) and in Followk(A).

For a grammar G = (Σ, N,R, S) construct Followk(A) = Firstk({ v | v follows A}) for all
A ∈ N .

For each rule A ∈ X1 . . . X` ∈ R, if x ∈ Firstk(Firstk(X1) . . .Firstk(X`) · Followk(A)),
then let Tk(A, x) = A ∈ X1 . . . X`. If this definition leads to any contradictory assignments, then
the grammar is not LL(k).

Algorithms to construct all this.

Algorithm 8.1 Constructing the sets Firstk for an ordinary grammar
Let G = (Σ, N,R, S) be an ordinary grammar, let k > 0. For all X ∈ Σ ∪ N , compute the set
Firstk(X).
1: Firstk(A) = ∅ for all A ∈ N
2: Firstk(a) = {a} for all a ∈ Σ
3: while new strings can be added to 〈Firstk(A)〉A∈N do
4: for all A→ X1 . . . X` ∈ R do
5: Firstk(A) = Firstk(A) ∪ Firstk(Firstk(X1) · . . . · Firstk(X`))

Denote Firstk(X1 . . . Xn) = Firstk(Firstk(X1) · . . . · Firstk(Xn)).

Algorithm 8.2 Constructing the sets Followk for an ordinary grammar
Let G = (Σ, N,R, S) be an ordinary grammar, let k > 0. For all A ∈ N , compute the set
Followk(A).
1: Followk(S) = {ε}
2: Followk(A) = ∅ for all A ∈ N \ {S}
3: while new strings can be added to 〈Followk(A)〉A∈N do
4: for all B → β ∈ R do
5: for all partitions β = µAν, with A ∈ N and µ, ν ∈ (Σ ∪N)∗ do
6: Followk(A) = Followk(A) ∪ Firstk(Firstk(ν) · Followk(B))

8.1.2 Recursive descent

A recursive descent parser is a program containing a procedure for every terminal and
nonterminal symbol used in the grammar. These procedures have access to the input string
w = a1a2 . . . a|w| and to a positive integer p pointing at the current position in this string.

Each procedure a(), with a ∈ Σ, simply checks that the next input symbol is a, and advances
p to the next position.

Deterministic top-down parsing 5

Algorithm 8.3 Constructing an LL(k) table for an ordinary grammar
Let G = (Σ, N,R, S) be an ordinary grammar, let k > 0. Compute Tk(A, x) for all A ∈ N and
x ∈ Σ6k.
1: for all A→ α ∈ R do
2: for all x ∈ Firstk(Firstk(α) · Followk(A)) do
3: if Tk(A, x) is not yet defined then
4: Tk(A, x) = (A→ α)
5: else
6: report conflict

For each A ∈ N , the procedure A() uses the table Tk to choose one of the rules for A,
using the k next symbols of the input. Once a rule A → X1 . . . X` is chosen, the subsequent
code X1(); . . . X`(); parses the following substring according to this rule, using the corresponding
procedures to parse its substrings. Each procedure Xi() advances the position in the input string,
so that the next procedure deals with a subsequent substring. In total, A() advances the position
in ` steps, consuming a substring generated by A.

Easy to program by hand.

8.2 Normal forms for LL(k) grammars

8.2.1 Elimination of null rules

Eliminating null rules is not so easy, because the earlier used method does not preserve the
LL property.

Example 8.2. Consider the following LL(1) grammar, which describes the language a∗c{b, ε}.

S → AB

A→ aA | c
B → b | ε

The standard transformation for eliminating null rules leads to the following grammar, which is
not LL(k) for any k.

S → AB | A
A→ aA | c
B → b

Indeed, an LL(k) parser would not be able to decide between the rules S → AB and S → A on
the input w = ak−1c.

Theorem 8.1 (Kurki-Suonio [3]; Rosenkrantz and Stearns [5]). For every LL(k) grammar there
exists and can be effectively constructed an LL(k + 1) grammar without null rules that defines
the same language.

First, transform the grammar so that no rule begins with a nullable symbol.

Lemma 8.1 (Rosenkrantz and Stearns [5]). For every ordinary grammar G = (Σ, N,R, S), there
exists another grammar G′ = (Σ, N ∪ N ′, R′, S′), with N ′ = {A′ | A ∈ N}, which satisfies the
following conditions:

6 A. Okhotin, “Formal grammars” (chapter 8 draft, September 24, 2014)

1. every rule in R′ is either of the form X → Y α, with X ∈ N ∪ N ′, Y ∈ Σ ∪ N ′ and
α ∈ (Σ ∪N ∪N ′)∗, or of the form A→ ε, with A ∈ N ;

2. for each A ∈ N , LG′(A) = LG(A) and LG′(A′) = LG(A′)\{ε}, and, in particular, L(G′) =
L(G) \ {ε};

3. if G is LL(k), then so is G′.

Proof. Let N0 = {A |A ∈ N, ε ∈ LG(A)} be the set of nullable symbols in G,
Consider any rule A→ α in R, and let B1 . . . Bm denote the largest prefix of α comprised of

nullable symbols. Accordingly, this rule can be presented in the following form.

A→ B1 . . . BmX1 . . . Xn (m,n > 0, B1, . . . , Bm ∈ N0, X1, . . . , Xn ∈ (Σ ∪N)∗, X1 /∈ N0)

If an LL parser uses this rule in a computation on some input string, it will then process the
symbols B1, . . . , Bm, X1, . . . , Xn from left to right, deriving ε from zero or more first symbols
B1, . . . , Bi−1, and then either derive a non-empty string from Bi or from X1 (if i − 1 = m), or
generate the empty string (if i − 1 = m and n = 0). In the new grammar, the choice of the
leftmost symbol in the rule to derive a non-empty substring of the input is made in the rule for
A; accordingly, there are the following new rules in R′ corresponding to different choices of that
symbol.

A→ B′iBi+1 . . . BmX1 . . . Xn (for i ∈ {1, . . . ,m}) (8.1a)
A→ X1 . . . Xn (8.1b)

If n = 0, then the latter rule produces the empty string. The rules for the other symbol A′ are
similar, except that the empty string is never produced.

A′ → B′iBi+1 . . . BmX1 . . . Xn (for i ∈ {1, . . . ,m}) (8.1c)
A′ → X1 . . . Xn (if n > 0) (8.1d)

Proof that the new grammar describes the right language: easy.
Preservation of the LL property (rough sketch). Assume that G is LL(k) and consider the

choice between any two rules for A in G′. If these two rules were created from different rules
for A in G, then one can choose between these rules in G′ in the same way as between their
prototypes in G. If these rules were created from the same rule in G, then these rules are
A → B′iBi+1 . . . BmX1 . . . Xn and A → B′jBj+1 . . . BmX1 . . . Xn, with i < j, and the parser for
G′ chooses between them by the same condition as the parser for G uses to decide whether to
derive the empty string from B′i.

Lemma 8.2 (Rosenkrantz and Stearns [5]). Let G = (Σ, N,R, S) be an LL(k) grammar, which
has no rules of the form A → Bγ, with ε ∈ LG(B). Denote its nullable symbols by N0 =
{A | A ∈ N, ε ∈ LG(A)}, and let N1 = {A | A ∈ N, ε /∈ LG(A)} be the rest of its category
symbols. Then there exists an LL(k + 1) grammar G′ = (Σ, N ′, R′, S′), where N ′ is a finite
subset of { [Xθ] |X ∈ Σ ∪N1, θ ∈ N∗0 }, and for each symbol [Xθ] ∈ N ′, LG′([Xθ]) = LG(Xθ).

Proof. For every string X1θ1 . . . Xnθn ∈ (Σ∪N)∗ \N0(Σ∪N)∗, where Xi ∈ Σ∪N1 and θi ∈ N∗0 ,
denote π(X1θ1 . . . Xnθn) = [X1θ1] . . . [Xnθn] ∈ (N ′)∗.

The initial symbol of the new grammar is S′ = [S].
If [Aθ] ∈ N ′ and A→ α ∈ R, then there is a rule

[Aθ]→ π(αθ)

Deterministic top-down parsing 7

If, for some a ∈ Σ θ, θ′ ∈ N∗0 , A ∈ N0, the symbol [aθAθ′] is in N ′, and A → α ∈ R, with
α 6= ε, then there is a rule

[aθAθ′]→ aπ(αθ′)

If, for some a ∈ Σ and θ ∈ N∗0 , the symbol [aθ] is in N ′, then there is a rule

[aθ]→ a

Example 8.3. Consider the LL(1) grammar from Example 8.2. According to Lemma 8.2, it is
transformed to the following LL(2) grammar:

[S]→ [AB]

[AB]→ [a][AB] | [cB]

[cB]→ c[b] | c
[a]→ a

[b]→ b

8.2.2 Greibach normal form

GNF: with all rules of the form A→ aα.

Theorem 8.2 (Rosenkrantz and Stearns [5]). For every LL(k) grammar there exists and can
be effectively constructed an LL(k + 1) grammar in the Greibach normal form that describes the
same language.

First, apply Theorem 8.1. If a grammar is LL, there is no left recursion in it. A finite sequence
of substitutions.

8.3 Limitations of LL(k) grammars

8.3.1 First method: interchangeable substring ahead

Example 8.4 (Rosenkrantz and Stearns [5]). The language { anbn | n > 0} ∪ { ancn | n > 0} is
not LL(k) for any k.

Proof. Suppose it is, and let G = (Σ, N,R, S) be an LL(k) grammar without null rules that
defines this language. For every n > 0, let αn ∈ (Σ ∪N)∗ be the stack contents of the parser on
the input an+kbn+k after consuming the symbols an. On the input an+kcn+k, the parser has the
same stack contents after consuming an, because it cannot yet see whether there are symbols b
or c ahead.

Claim 1: αm 6= αn for all m 6= n.
If αm = αn, then the parser loses count and will accept the strings am+kbn+k and an+kbm+k.
Claim 2: there exists n, for which |αn| > k + 2.
Let αn = X1 . . . Xm, where Xi ∈ Σ ∪N and m > k + 2. It is known that akbn+k, akcn+k ∈

LG(αn) = LG(X1 . . . Xm), that is, there are partitions akbn+k = x1 . . . xm and akcn+k = y1 . . . ym
with xi, yi ∈ LG(Xi). Since none of Xi may generate the empty string, xi, yi 6= ε, and therefore
xm = b` and ym = c`

′ , where 0 < ` < n + k and 0 < `′ < n + k. Then the string akbn+k−`c`
′ is

also in LG(αn), and therefore the string an+kbn+k−`c`
′ is generated by the grammar, which is a

contradiction.

8 A. Okhotin, “Formal grammars” (chapter 8 draft, September 24, 2014)

8.3.2 Second method: unexpected end

Example 8.5 (Wood [6]). The language a∗ ∪ { anbn | n > 0} is not LL(k) for any k.

Sketch of a proof. Suppose it is. Assume, without loss of generality, that it is described by an
LL(k) grammar without null rules. On the one hand, after reading an, the parser needs to
remember n in the stack, which requires an unbounded number of symbols on the stack. On
the other hand, it should always be ready to accept ak, and therefore cannot have more than k
symbols on the stack.

8.3.3 Disjoint unions of LL(k) languages

Theorem 8.3 (Rosenkrantz and Stearns [5]). Let L1, . . . , Ln ⊆ Σ∗ be pairwise disjoint LL(k)
languages, and assume that L1 ∪ . . . ∪ Ln is regular. Then all languages L1, . . . , Ln must be
regular.

Proof. If L1 ∪ . . . ∪ Ln 6= Σ∗, then L1 ∪ . . . ∪ Ln is a non-empty regular language, hence LL(k).
Then it can be added to the list. Accordingly, assume that the union of all given languages is
Σ∗.

Consider n LL(k) parsers that recognize the corresponding languages L1, . . . , Ln. The general
goal is to prove that there exists some constant m̂ that bounds the number of symbols in the
stack of each parser upon reading each input string.

For each string u ∈ Σ∗ and for each look-ahead string x ∈ Σ6k, consider the computation of
the parser for each Li on the input ux. Denote its stack contents after reading u by α(i)

u,x, which
may be undefined for some values of i. Consider the ordering of languages L1, . . . , Ln according
to the number of symbols in α(1)

u,x, . . . , α
(n)
u,x, represented by a permutation (i1(u, x), . . . , in(u, x))

of (1, . . . , n), where |α(i1(u,x))
u,x | 6 . . . 6 |α(in(u,x))

u,x |. If any values are undefined, assume that they
are at the end of the list.

The updated goal is to prove that there exist such numbers m1, . . .mn > 0, that for all j, the
stack size |α(ij(u,x))

u,x | is bounded by mj , for all strings u ∈ Σ∗ and look-ahead strings x ∈ Σ6k.
Define m1 = k.
Claim: |α(i1(u,x))

u,x | 6 m1.
For each u, x, the string ux must belong to some Li. In order to accept from the configuration

(α
(i)
u,x, x), the stack of the i-th parser may not contain more than |x| symbols. Therefore,

α(i1(u,x))
u,x 6 α(i)

u,x 6 |x| 6 k

For every u, x, consider any continuation that begins with x and is not accepted by the parser
number i1(u, x). Let v = v(u, x) denote the shortest such continuation, with v /∈ L(α

i1(u,x)
u,x). As

it is already known that the length of αi1(u,x)
u,x is bounded by m1, there are only finitely many

such languages L(α
i1(u,x)
u,x), and accordingly, the above definition gives only finitely many different

continuations v over all (countably many) values of u and x. Therefore, the maximum length of
v is well-defined, and it is used as the second upper bound m2.

m2 = max
u∈Σ∗

x∈Σ6k

min
{
|v|
∣∣ Firstk(v) = x, v /∈ L(αi1(u,x)

u,x)
}

To see that m2 is the upper bound on the length of α(i2(u,x))
u,x for all u and x, consider any

u ∈ Σ∗ and x ∈ Σ6k. Let v ∈ Σ∗ be any of the shortest strings satisfying Firstk(v) = x

and v /∈ L(α
(i1(u,x))
u,x). Then the parser number i1(u, x) does not accept the string uv, and

there should exist some other j-th parser that accepts it, with j in {i2(u, x), . . . , in(u, x)}. The

Deterministic top-down parsing 9

acceptance of uv by the j-th parser means that v ∈ L(α
(j)
u,x), which implies that |α(j)

u,x| 6 |v|, and
therefore

|α(i2(u,x))
u,x | 6 |α(j)

u,x| 6 |v| 6 m2.

Every next upper bound mj is defined as

mj = max
u∈Σ∗

x∈Σ6k

min
{
|v|
∣∣ Firstk(v) = x, v /∈ L(αi1(u,x)

u,x) ∪ . . . ∪ L(α
ij−1(u,x)
u,x)

}
This proves that the size of the stack of each parser is bounded by a constant, and therefore

the parser has a finite number of possible stack configurations. Then the parser can be simulated
by a finite automaton, which uses its internal states to hold the parser’s stack contents.

Corollary 8.1. Let L ⊆ Σ∗ be a non-regular LL(k) language. Then its complement L is not
LL(k′) for any k′ > 1.

Example 8.6 (Rosenkrantz and Stearns [5]). The language L = { ambn | 0 6 m 6 n} is defined
by the following LL(1) grammar:

S → AB

A→ aBb | ε
B → bB | ε

Therefore, the language L′ = { ambn |m > n > 0} is not LL(k) for any k, because L∪L′ = a∗b∗.

Bibliography

[1] J. C. Beatty, “Two iteration theorems for the LL(k) languages”, Theoretical Computer Sci-
ence, 12:2 (1980), 193–228.

[2] D. E. Knuth, “Top-down syntax analysis”, Acta Informatica, 1 (1971), 79–110.

[3] R. Kurki-Suonio, “Notes on top-down languages”, BIT Numerical Mathematics, 9:3 (1969),
225–238.

[4] P. M. Lewis II, R. E. Stearns, “Syntax-directed transduction”, Journal of the ACM, 15:3
(1968), 465–488.

[5] D. J. Rosenkrantz, R. E. Stearns, “Properties of deterministic top-down grammars”, Infor-
mation and Control, 17 (1970), 226–256.

[6] D. Wood, “A further note on top-down deterministic languages”, Computer Journal, 14:4
(1971), 396–403.

10

http://dx.doi.org/10.1016/0304-3975(80)90029-8
http://dx.doi.org/10.1007/BF00289517
http://dx.doi.org/10.1007/BF01946814
http://dx.doi.org/10.1145/321466.321477
http://dx.doi.org/10.1016/S0019-9958(70)90446-8
http://dx.doi.org/10.1093/comjnl/14.4.396

Index

Knuth, Donald Ervin (b. 1938), 2
Kurki-Suonio, Reino (b. 1937), 2, 5

Lewis, Philip M. II (b. 1931), 2

Rosenkrantz, Daniel Jay (b. 1943), 2, 5–9

Stearns, Richard Edwin (b. 1936), 2, 5–9

Wood, Derick (1940–2010), 8

11

	Deterministic top-down parsing
	LL(k) grammars and parsers
	Look-up table construction
	Recursive descent

	Normal forms for LL(k) grammars
	Elimination of null rules
	Greibach normal form

	Limitations of LL(k) grammars
	First method: interchangeable substring ahead
	Second method: unexpected end
	Disjoint unions of LL(k) languages

	Bibliography
	Name index

