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e Linear regression is a simple approach to supervised
learning. It assumes that the dependence of Y on
X1,Xo,... X, is linear.

e True regression functions are never linear!

e although it may seem overly simplistic, linear regression is
extremely useful both conceptually and practically.



Linear regression for the advertising data

Consider the advertising data shown on the next slide.

Questions we might ask:

Is there a relationship between advertising budget and
sales?

How strong is the relationship between advertising budget
and sales?

Which media contribute to sales?
How accurately can we predict future sales?
Is the relationship linear?

Is there synergy among the advertising media?



Advertising data
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Simple linear regression using a single predictor X.

e We assume a model
Y =05y + 81X +e,

where [y and (5, are two unknown constants that represent
the intercept and slope, also known as coefficients or
parameters, and € is the error term.

e Given some estimates Bg and ,5’1 for the model coefficients,
we predict future sales using

g = Bo+ pi,

where ¢ indicates a prediction of Y on the basis of X = .
The hat symbol denotes an estimated value.



Estimation of the parameters by least squares

o Let g; = Bo + lei be the prediction for Y based on the ith
value of X. Then e; = y; — 9; represents the ith residual

5/48



Estimation of the parameters by least squares

o Let g; = Bo + lei be the prediction for Y based on the ith
value of X. Then e; = y; — 9; represents the ith residual

e We define the residual sum of squares (RSS) as
RSS=e? +e3+-- +é?

n’

or equivalently as

RSS = (y1—Fo—PB1x1)*+(y2—Bo—Prza)*+. . A (yn—Bo—b1zn)?.



Estimation of the parameters by least squares

Let 4; = Bo + lei be the prediction for Y based on the ith
value of X. Then e; = y; — 9; represents the ith residual
We define the residual sum of squares (RSS) as

RSS=e? +e3+-- +é?

n’

or equivalently as

RSS = (y1—Fo—Prx1)*+ (2 —Po—Frza)?+. . A (yn—Fo—Lrza)>.

The least squares approach chooses Bo and Bl to minimize
the RSS. The minimizing values can be shown to be

5, - Do~ 2) (= 9)
Yica(zi—z)2 7
50 =9y - /Bli‘a
where § = %Z;;l y; and T = % > i, x; are the sample
means.




Example: advertising data
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The least squares fit for the regression of sales onto TV.
In this case a linear fit captures the essence of the relationship,
although it is somewhat deficient in the left of the plot.
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Assessing the Accuracy of the Coefficient Estimates

e The standard error of an estimator reflects how it varies
under repeated sampling. We have
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e These standard errors can be used to compute confidence
intervals. A 95% confidence interval is defined as a range of
values such that with 95% probability, the range will
contain the true unknown value of the parameter. It has
the form

B1£2-SE(S).



Confidence intervals — continued

That is, there is approximately a 95% chance that the interval
P1—2-SE(B1), 1 +2- SE(BI)}

will contain the true value of 51 (under a scenario where we got
repeated samples like the present sample)



Confidence intervals — continued

That is, there is approximately a 95% chance that the interval
P1—2-SE(B1), 1 +2- SE(BI)}

will contain the true value of 51 (under a scenario where we got
repeated samples like the present sample)

For the advertising data, the 95% confidence interval for ; is
[0.042,0.053]



Hypothesis testing

e Standard errors can also be used to perform hypothesis
tests on the coefficients. The most common hypothesis test
involves testing the null hypothesis of

Hy : There is no relationship between X and Y
versus the alternative hypothesis

Hy: There is some relationship between X and Y.
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Hypothesis testing

Standard errors can also be used to perform hypothesis
tests on the coefficients. The most common hypothesis test
involves testing the null hypothesis of
Hy : There is no relationship between X and Y
versus the alternative hypothesis

Hy: There is some relationship between X and Y.

Mathematically, this corresponds to testing
H() : 51 =0

versus
HA : /Bl 3& 07

since if 81 = 0 then the model reduces to Y = By + ¢, and
X is not associated with Y.
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Hypothesis testing — continued

e To test the null hypothesis, we compute a t-statistic, given
by R
. p1—0
SE(51)
e This will have a t-distribution with n — 2 degrees of
freedom, assuming 51 = 0.

e Using statistical software, it is easy to compute the
probability of observing any value equal to || or larger. We
call this probability the p-value.
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Results for the advertising data

Coefficient Std. Error t-statistic = p-value

Intercept
TV

7.0325 0.4578 15.36 < 0.0001
0.0475 0.0027 17.67 < 0.0001




Assessing the Overall Accuracy of the Model
e We compute the Residual Standard Error

[ 1 R
= —_— pu— —_— ; — A‘ 2
RSE = — 2RSS J — g (yi — 0:i)2,

=1

where the residual sum-of-squares is RSS = "1 (yi — §i)?.
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Assessing the Overall Accuracy of the Model
e We compute the Residual Standard Error

1 1 <
p— e P— A. 2
RSE ,/n ~ 2Rss — Z(yz i)2,

i=1

where the residual sum-of-squares is RSS = "1 (yi — §i)?.
e R-squared or fraction of variance explained is

g2 TSS—RSS _ RSS

TSS ~ TSS
where TSS = >°1 | (y; — §)? is the total sum of squares.
e It can be shown that in this simple linear regression setting
that R? = 72, where 7 is the correlation between X and Y:

_ > i (zi —T)(yi — 7)) ‘
Vit (@i =) (i — )

r




Advertising data results

Quantity Value
Residual Standard Error | 3.26
R? 0.612

F-statistic

312.1
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Multiple Linear Regression

e Here our model is
Y = B0+ 51 X1+ BoXo+ -+ Bp Xy, + 6,

e We interpret 3; as the average effect on Y of a one unit
increase in X, holding all other predictors fized. In the
advertising example, the model becomes

sales = By + 1 X TV 4 Py X radio + f3 X newspaper + €.
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Interpreting regression coefficients

e The ideal scenario is when the predictors are uncorrelated
— a balanced design:

- Each coefficient can be estimated and tested separately.

- Interpretations such as “a unit change in X; is associated
with a B; change in'Y , while all the other variables stay
fized”, are possible.

e Correlations amongst predictors cause problems:

- The variance of all coefficients tends to increase, sometimes
dramatically

- Interpretations become hazardous — when X; changes,
everything else changes.

e Claims of causality should be avoided for observational
data.



The woes of (interpreting) regression coefficients

“Data Analysis and Regression” Mosteller and Tukey 1977

e a regression coefficient 3; estimates the expected change in
Y per unit change in X, with all other predictors held
fized. But predictors usually change together!
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The woes of (interpreting) regression coefficients

“Data Analysis and Regression” Mosteller and Tukey 1977

e a regression coefficient 3; estimates the expected change in
Y per unit change in X, with all other predictors held
fized. But predictors usually change together!

° Example' Y total amount of change in your pocket;

= # of coins; X5 = # of pennies, nickels and dimes. By
1tself, regression coefficient of Y on Xs will be > 0. But
how about with X7 in model?

e Y= number of tackles by a football player in a season; W
and H are his weight and height. Fitted regression model
is Y = by + .50W — .10H. How do we interpret 2 < 07
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Two quotes by famous Statisticians

“Essentially, all models are wrong, but some are useful”

George Box
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Two quotes by famous Statisticians

“Essentially, all models are wrong, but some are useful”
George Box
“The only way to find out what will happen when a complex

system is disturbed is to disturb the system, not merely to
observe it passively”

Fred Mosteller and John Tukey, paraphrasing George Box
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Estimation and Prediction for Multiple Regression

e Given estimates (o, 51, ... 8p, we can make predictions
using the formula

@Zﬁo+31$1+32$2+"'+3p37p-

e We estimate /39, 31,. .., 8p as the values that minimize the
sum of squared residuals

n
RSS = ) (yi— )
i=1
n
= Z(yi — Bo — Bt — Powin — -+ — Bpwip)?.

i=1
This is done using standard statistical software. The values
Bo, B1, - . ., Bp that minimize RSS are the multiple least
squares regression coefficient estimates.
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Results for advertising data

Coefficient Std. Error t-statistic p-value
Intercept 2.939 0.3119 9.42 < 0.0001
TV 0.046 0.0014 32.81 < 0.0001
radio 0.189 0.0086 21.89 < 0.0001
newspaper -0.001 0.0059 -0.18 0.8599
Correlations:
TV radio newspaper sales
TV 1.0000 0.0548 0.0567 0.7822
radio 1.0000 0.3541 0.5762
newspaper 1.0000 0.2283
sales 1.0000
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Some important questions

1. Is at least one of the predictors X1, Xo, ..

predicting the response?
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Some important questions

. Is at least one of the predictors X1, X, ..., X, useful in
predicting the response?

. Do all the predictors help to explain Y, or is only a subset
of the predictors useful?

. How well does the model fit the data?

. Given a set of predictor values, what response value should
we predict, and how accurate is our prediction?



Is at least one predictor useful?

For the first question, we can use the F-statistic

(TSS — RSS)/p

F = ~F,
RSS/(n—p—1) PP
Quantity Value
Residual Standard Error | 1.69
R? 0.897
F-statistic 570




