Равномерная сходимость. Занятие 1. 4 сентября

Добрый день! Сегодня у нас занятие про равномерную сходимость. Начнем с определений.

Мы говорим, что набор функций $\{f_n\}$, определенных на множестве E,

1. $cxo\partial umcя$ к функции f(x) на E, если

$$\forall x \in E \ \forall \varepsilon > 0 \ \exists N \in \mathbb{N} : \forall n > N \ |f_n(x) - f(x)| < \varepsilon;$$

2. $pавномерно\ cxodumcя\ к\ функции\ f(x),\ если$

$$\forall \varepsilon > 0 \ \forall x \in E \ \exists N \in \mathbb{N} : \forall n > N \ |f_n(x) - f(x)| < \varepsilon.$$

Равномерная сходимость влечет обычную, правда?

Пусть есть непрерывные функции $u_n(x)$. Ряд $\sum u_n(x)$ называется *сходящимся*, если частичные суммы сходятся как функции. То же и про абсолютную сходимость. И про равномерную.

Необходимым условием равномерной сходимости ряда $\sum u_n(x)$ на множестве E является равномерная сходимость $u_n(x)$ к нулю на множестве E, то есть что для любого $\varepsilon > 0$ можно указать такое N, что при n > N для любой точки $x \in E$ верно $u_n(x) \le \varepsilon$.

Признак Вейерштрасса. Если для ряда $\sum u_n(x)$ выполняется условие $|u_n(x)| \leq c_n$ при всех n и $x \in E$, а также ряд $\sum c_n$ сходится, то ряд $\sum u_n(x)$ абсолютно и равномерно сходится на E. В таком случае говорят, что ряд $\sum u_n(x)$ мажеорируется рядом $\sum c_n$.

Разминка

- 1. Загадка: пусть функция f непрерывна на множестве B. Какое условие на $A \subset B$ необходимо и достаточно для того, чтобы f была равномерно непрерывна на A?
- 2. Можно ли привести пример функции, которая не равномерно непрерывна на \mathbb{R} , но равномерно непрерывна на любом замкнутом отрезке [a, b]?
- 3. Можно ли привести пример ряда, который не равномерно сходится на \mathbb{R} , но равномерно сходится на любом замкнутом отрезке [a, b]?

Задачи

- 1. Исследуйте на сходимость и равномерную сходимость
 - (a) $\sum \frac{x^2}{1+n^{3/2}x^2}$ на \mathbb{R} ;
 - (b) $\sum 2^{-n} \cos(\pi nx)$ на \mathbb{R} ;
 - (c) $\sum \frac{\cos{(nx)}}{1+n^3x^4}$ на $\mathbb{R}_+ = (0, \infty)$;
 - (d) $\sum \frac{\sqrt{x}\cos(nx)}{1+n^3x^4}$ на \mathbb{R}_+ ;
 - (e) $\sum \frac{x \sin(x+n)}{n^2 x^2 + n + 1}$ на \mathbb{R}_+ .
- 2. Исследуйте функцию $\sum \frac{\sqrt{x}\cos(nx)}{1+n^3x^4}$ на непрерывность на интервале $(0,\infty)$.
- 3. Исследуйте на сходимость и равномерную сходимость на интервалах E_1 и E_2 ряды
 - a) $\sum \arctan \frac{x}{n^2}$, $E_1 = [0, a]$, $E_2 = [0, \infty)$;
 - b) $\sum \frac{1}{1+n^2x}$, $E_1 = (0,1]$, $E_2 = [1,\infty)$.
- 4. Верно ли, что любая непрерывная на]a,b[функция f(x) такая, что $\lim_{x\to a} f(x) = \infty$, не является на этом интервале равномерно непрерывной?

Функции от нескольких переменных и всякое про равномерность. Занятие 2. 6 сентября

Добрый день! Вы, наверное, соскучились.

Функция $f:A\to B$ называется непрерывной, если при $|f(a)-f(a_0)|\to 0$ при $a\to a_0$ для произвольного a_0 . (Кстати, что значат эти палочки, когда $A\subset\mathbb{R}^2$?) Непрерывность называется равномерной, если скорость стремления не зависит от a_0 .

Разминка

- 1. Исследуйте на равномерную непрерывность функцию f(x,y) = 2x 3y + 5.
- 2. Исследуйте на равномерную непрерывность функцию $f(x,y) = 2x^2 3y^2 + 5$.
- 3. Исследуйте на равномерную непрерывность функцию $f(x,y)=2x^2-3y^2+5$ на квадрате $[-100,100]\times[-100,100]$.
- 4. Определение чего тут написано? $\forall \varepsilon > 0; \exists \delta = \delta(\varepsilon) > 0: \forall x_1, x_2 \in M \quad (|x_1 x_2| < \delta) \Rightarrow (|f(x_1) f(x_2)| < \varepsilon)$
- 5. A Tyt? $\forall \varepsilon > 0$; $\forall x_1 \in M \ \exists \delta = \delta(\varepsilon, x_1) > 0$: $\forall x_2 \in M \ (|x_1 x_2| < \delta) \Rightarrow (|f(x_1) f(x_2)| < \varepsilon)$

Настоящие задачи.

- 1. Пусть последовательность частичных сумм $S_n(x)$, определенных на интервале [0,1] равномерно сходится к S(x). Является ли функция $f(n,x) := S_n(x)$ непрерывной, где она определена и что всё это значит?
- 2. Докажите, что если функция f(x,y) в некоторой области G непрерывна по переменной x и равномерно относительно x непрерывна по переменной y, то эта функция непрерывна в рассматриваемой области.
- 3. Является ли функция $u := \arcsin \frac{x}{y}$ непрерывной в своей области определения (кстати, найдите её); является ли она равномерно непрерывной в области определения?
- 4. Докажите, что если в G функция f(x,y) непрерывна в области G по переменной x и липшицева по y, то есть

$$|f(x, y_1) - f(x, y_2)| \le L|y_1 - y_2|$$

для некоторой константы L, то f непрерывна на G.

5. (Теорема Юнга) Докажите, что если функция f(x,y) непрерывна по каждой переменной и монотонна по x, то она непрерывна.

Функции от нескольких переменных. Занятие 3. 20 сентября

Добрый день! Мы начинаем изучение функций нескольких переменных. Довольно часто они устроены совсем не так, как функции одной переменной. Приведем классический пример: Функция

$$f(x,y) = \frac{x^2y}{x^4 + y^2}$$

стремится к нулю при движении к нулю по любой прямой, проходящей через начало координат. Проверьте это. А также посчитайте повторные пределы. Однако она не является непрерывной: существует набор точек (x_i, y_i) , стремящийся к нулю, такой что $f(x_i, y_i)$ стремится к $\frac{1}{2}$. Укажите такой набор.

Кстати, какие функции мы будем называть непрерывными в точке? Два определения.

Теперь перейдем к разминке.

- 1. Найдите область существования функции $z = \arcsin \frac{x}{2} + \sqrt{xy}$.
- 2. Постройте линии уровня функции $z = x^2 y$.

Настало время задач.

Пределы

1. Докажите, что

$$\lim_{\substack{x \to 0 \\ y \to 0}} (x+y) \sin \frac{1}{x} \sin \frac{1}{y} = 0.$$

2. Найдите

$$\lim_{\substack{x \to 0 \\ y \to 2}} (1 + xy)^{2/(x^2 + xy)}.$$

- 3. Существуют ли повторные пределы функции $f(x,y) = (x+y)\sin\frac{1}{x}\sin\frac{1}{y}$ в точке (0;0)?
- 4. Существует ли предел

$$\lim_{\substack{x \to 0 \\ y \to 0}} \frac{xy}{x^2 + y^2}?$$

5. Вычислите предел

$$\lim_{\substack{x \to \infty \\ y \to \infty}} \frac{x + 2y}{x^2 - 2xy + 2y^2}.$$

Наверное, начиная примерно отсюда задачи из этого раздела пойдут в дз на 27.09.

- 6. Функцию z = f(x, y), определенную при $x \neq 0$ и удовлетворяющую тождественно соотношению $f(mx, my) = m^k f(x, y)$ при любом m, называют однородной функцией порядка k. Доказать, что такая функция может быть представлена в виде $z = x^k F(\frac{y}{x})$.
- 7. Вычислите повторные пределы функции $f(x,y)=\frac{ax+by}{cx+dy}$ в точке (0;0) при условии $c\neq 0,\, d\neq 0.$
- 8. Покажите, что для функции $f(x,y) = \frac{x-y}{x+y}$ выполнено $\lim_{x\to 0} \lim_{y\to 0} f(x,y) = 1$, $\lim_{y\to 0} \lim_{x\to 0} f(x,y) = -1$, в то время как предела $\lim_{\substack{x\to 0\\y\to 0}} f(x,y)$ не существует.
- 9. Пусть последовательность непрерывных частичных сумм $S_n(x)$, определенных на интервале [0,1], равномерно сходится к S(x). Является ли функция $f(n,x) := S_n(x)$ непрерывной, где она определена и что всё это значит?

Частные производные

1. Частная производная — это предел отношения приращения функции по выбранной переменной к приращению этой переменной, при стремлении этого приращения к нулю. То есть частная производная функции f в точке (a_1, a_2, \ldots, a_n) определяется следующим образом:

$$\frac{\partial f}{\partial x_k}(a_1, \cdots, a_n) = \lim_{\Delta x \to 0} \frac{f(a_1, \dots, a_k + \Delta x, \dots, a_n) - f(a_1, \dots, a_k, \dots, a_n)}{\Delta x}.$$

То есть считаем производную по одной переменной как от функции одного аргумента, полагая остальные константами. Геометрически — скорость изменения при движении вдоль одной из осей.

Смешанные производные. Пусть функция z = f(x,y), и её частные производные $\frac{\partial f}{\partial x}$, $\frac{\partial f}{\partial y}$ определены в некоторой окрестности точки (x_0, y_0) . Тогда смешанной производной функции f(x, y) в точке (x_0, y_0) будет называться функция

$$f_{y,x}''(x_0, y_0) = \frac{\partial^2 f(x_0, y_0)}{\partial y \partial x} := \frac{\partial}{\partial y} \left(\frac{\partial f}{\partial x} \right).$$

2. Посчитаем $\frac{\partial f}{\partial x},\, \frac{\partial^2 f}{\partial x^2},\, \frac{\partial^2 f}{\partial y^2},\, \frac{\partial^2 f}{\partial x \partial y}$ у функции

$$f(x,y) = \frac{xy}{x^2 + y^2}$$

(доопределим ее нулем в (0,0)).

- 3. Возьмите частные (старших порядков и смешанные) производные каких-нибудь функций из номеров 1-7 по x и по y.
- 4. Посчитайте скорость изменения объема конуса $(V = \frac{\pi r^2 h}{3})$ при изменении его высоты (и про фиксированном радиусе). И наоборот.

Занятие 4. 27 сентября.

Частные производные

1. Частная производная — это предел отношения приращения функции по выбранной переменной к приращению этой переменной, при стремлении этого приращения к нулю. То есть частная производная функции f в точке (a_1, a_2, \ldots, a_n) определяется следующим образом:

$$\frac{\partial f}{\partial x_k}(a_1, \cdots, a_n) = \lim_{\Delta x \to 0} \frac{f(a_1, \dots, a_k + \Delta x, \dots, a_n) - f(a_1, \dots, a_k, \dots, a_n)}{\Delta x}.$$

То есть считаем производную по одной переменной как от функции одного аргумента, полагая остальные константами. Геометрически — скорость изменения при движении вдоль одной из осей.

Пусть функция z=f(x,y), и её частные производные $\frac{\partial f}{\partial x}$, $\frac{\partial f}{\partial y}$ определены в некоторой окрестности точки $(x_0,\ y_0)$. Тогда смешанной производной функции $f(x,\ y)$ в точке $(x_0,\ y_0)$ будет называться функция

$$f_{y,x}''(x_0, y_0) = \frac{\partial^2 f(x_0, y_0)}{\partial y \partial x} := \frac{\partial}{\partial y} \left(\frac{\partial f}{\partial x} \right).$$

- 2. Посчитайте скорость изменения объема конуса $(V = \frac{\pi r^2 h}{3})$ при изменении его высоты (и про фиксированном радиусе). И наоборот.
- 3. А бывает, чтобы $\frac{\partial}{\partial y}\left(\frac{\partial f}{\partial x}\right)(x_0,y_0)\neq \frac{\partial}{\partial x}\left(\frac{\partial f}{\partial y}\right)(x_0,y_0)$?
- 4. Разложите в ряд Тейлора около (0,0) с точностью до $o(x^2+y^2)$ функцию
 - (a) $\cos y \sin x$
 - (b) $\cos(xy)$
 - (c) $\cos(x+y)$

Занятие 5. 4 октября

Дифференциал

Если полное приращение функции f(x, y, z) от независимых переменных x, y, z можно представить в виде

$$\Delta f(x, y, z) = A\Delta x + B\Delta y + C\Delta z + o(\rho),$$

где коэффициенты $A,\ B$ и C не зависят от $\Delta x,\ \Delta y,\ \Delta z$ и $\rho=\sqrt{(\Delta x)^2+(\Delta y)^2+(\Delta z)^2},$ то функция f(x,y,z) называется дифференцируемой в точке (x,y,z), а линейная часть приращения $A\Delta x+B\Delta y+C\Delta z,$ равная

$$df(x, y, z) = f'_x(x, y, z)dx + f'_y(x, y, z)dy + f'_z(x, y, z)dz,$$

где $dx = \Delta x$, $dy = \Delta y$, $dz = \Delta z$, называется дифференциалом этой функции. Иначе говоря, дифференциалом отображения $f: \mathbb{R}^n \to \mathbb{R}^m$ в точке $x_0 \in \mathbb{R}^n$ называют линейный оператор $d_{x_0} f: \mathbb{R}^n \to \mathbb{R}^m$ такой, что выполняется условие $d_{x_0} f(h) = f(x_0 + h) - f(x_0) + o(h)$.

Для дифференцируемости функции достаточно, чтобы частные производные существовали и были непрерывными в некоторой окрестности рассматриваемой точки. А необходимо, что все частные производные существовали.

Матрица линейного оператора $d_{x_0}f$ равна матрице Якоби; её элементами являются частные производные f.

Матрица Якоби отображения $\mathbf{u}: \mathbb{R}^n \to \mathbb{R}^m$ в точке $x \in \mathbb{R}^n$ описывает главную линейную часть произвольного отображения \mathbf{u} в точке x. Пусть задано отображение $\mathbf{u}: \mathbb{R}^n \to \mathbb{R}^m$,

$$\mathbf{u} = (u_1, \dots, u_m), u_i = u_i(x_1, \dots, x_n), i = 1, \dots, m,$$

имеющее в некоторой точке x все частные производные первого порядка. Матрица J, составленная из частных производных этих функций в точке x, называется матрицей Якоби J(x) данной системы функций:

$$J(x) = \begin{pmatrix} \frac{\partial u_1}{\partial x_1}(x) & \frac{\partial u_1}{\partial x_2}(x) & \cdots & \frac{\partial u_1}{\partial x_n}(x) \\ \frac{\partial u_2}{\partial x_1}(x) & \frac{\partial u_2}{\partial x_2}(x) & \cdots & \frac{\partial u_2}{\partial x_n}(x) \\ \vdots & \vdots & \ddots & \vdots \\ \frac{\partial u_m}{\partial x_1}(x) & \frac{\partial u_m}{\partial x_2}(x) & \cdots & \frac{\partial u_m}{\partial x}(x) \end{pmatrix}.$$

Иными словами, матрица Якоби является производной векторной функции от векторного аргумента.

- 1. Является ли функция $f(x,y) = x + y^2 + \ln(x + y^2)$ дифференцируемой в точке (0;1)? Если да, найдите df(0;1).
- 2. Найти $f'_x(0,0)$ и $f'_y(0,0)$, если $f(x,y) = \sqrt[3]{xy}$. Является ли эта функция дифференцируемой в точке (0,0)?
- 3. Найти $f'_x(x,1)$, если $f(x,y) = x + (y-1) \arcsin \sqrt{\frac{x}{y}}$.
- 4. Найти дифференциал функции $f(x,y) = e^{xy}$.
- 5. Найдите все точки, в окрестностях которых функция f(x,y) = x|y| + y|x| дифференцируема?

Домашнее задание:

1. Является ли функция $e^x + y + \sqrt{e^x + y}$ дифференцируемой в окрестности (1, -1)?

Градиент, производные по направлению

Градиентом функции $f(x_1,\ldots,x_n)$ называется n-мерный вектор $\left(\frac{\partial f}{\partial x_1},\ldots,\frac{\partial f}{\partial x_n}\right)$ (строка матрицы Якоби).

Рассмотрим функцию $f(x_1, \ldots, x_n)$ от n аргументов в окрестности точки $\bar{x}^0 = (x_1^0, \ldots, x_n^0)$. Для любого единичного вектора $\vec{e} = (e_1, \ldots, e_n)$ определим производную функции f в точке \bar{x}^0 по направлению \vec{e} следующим образом:

$$D_{\vec{e}}f(\vec{x}) = \frac{\partial f}{\partial e} = \lim_{h \to 0} \frac{f(\bar{x}^0 + h \cdot \vec{e}) - f(\vec{x}^0)}{h}.$$

Значение этого выражения показывает, как быстро меняется значение функции при сдвиге аргумента в направлении вектора \vec{e} . Если направление сонаправлению с координатной осью, то производная по направлению совпадает с частной производной по этой координате. Производную по направлению дифференцируемой по совокупности переменных функции можно рассматривать как проекцию градиента функции, то есть как скалярное произведение градиента на орт направления: $\frac{\partial f}{\partial e} = \nabla f \cdot \vec{e}$.

Отсюда следует, что максимальное значение в точке производная по направлению принимает, если направление совпадает с направлением градиента функции в данной точке (поэтому метод градиентного спуска).

- 1. Найдите градиент функции f в точке M, если $f = \operatorname{arctg}(\frac{xy}{x^2})$, M(0;1;2).
- 2. Найдите производную функцию f по направлению вектора l в точке M, если:
 - (a) $f = \ln(x^2 + y^2 + z^2), l = (-1, 2, 2), M = (1, 2, 1);$
 - (b) $f = \arcsin(\frac{z}{\sqrt{x^2+y^2}}), M = (1; 1; 1), A = (1; 5; 4), l = \overline{MA}.$
- 3. Вычислите $\sum_{i=1}^4 \frac{\partial f}{\partial x_i}$, если $f = \frac{x_1 x_2}{x_3 x_4} + \frac{x_4 x_1}{x_2 x_3}$.

Занятие 6. 11 октября

Производные неявной функции

Пусть функция F(x,u). $x \in \mathbb{R}^n$, $u \in R$ равна нулю в точке $(x^0,u^0)=(x_1^0,x_2^0,\dots x_n^0,u^0)$ и непрерывна в некоторой её окрестности, частная производная F'_u непрерывна в точке (x^0,u^0) и $F'_u(x^0,u^0) \neq 0$. Тогда в некоторой окрестности точки x^0 существует единственная непрерывная функция u=f(x) такая, что $u^0=f(x^0)$, удовлетворяющая уравнению F(x;u)=0.

Если, кроме того, производны F'_{x_k} непрерывны в точке (x^0, u^0) , то в точке x^0 существуют все частные производные функции u = f(x), причем

$$f'_{x_k} = -\frac{F'_{x_k}}{F'_u}.$$

Иначе говоря, $(f'_{x_1}; f'_{x_2}; \dots; f'_{x_n}) = -(F'_u)^{-1}(F'_{x_1}; F'_{x_2}; \dots; F'_{x_n}).$

- 1. Найдите в точке (1;1) частные производные функции u=f(x;y) заданной неявно уравнением
 - (a) $u^3 2u^2x + uxy 2 = 0$;
 - (b) $x u = u \ln(\frac{u}{u})$.
- 2. Для функции f(u) найдите f'_x и f'_y , если
 - (a) $u = x^2 + e^y$:
 - (b) $u = \arctan(x + \ln y)$.
- 3. Найдите решение u(x,y) уравнения $\frac{\partial u}{\partial y} = 2x + y^2$, удовлетворяющее условию $u(x,x^2) = 0$.

Пусть функции $F_i(x,u)$. $x \in \mathbb{R}^n$, $u \in \mathbb{R}^m$ равны нулю в точке $(x^0,u^0)=(x_1^0,x_2^0,\dots x_n^0,u_1^0,u_2^0,\dots u_m^0)$ и непрерывны в некоторой её окрестности, а их частные производные $(F_i)'_{u_k},\ k=1,\dots m$ непрерывны в точке (x^0,u^0) и определитель

$$(F_1)'_{u_1} \dots (F_1)'_{u_m}$$

 $(F_m)'_{u_1} \dots (F_m)'_{u_m}$

(якобиан системы функций F_i) не равен 0 в точке (x^0, u^0) . Тогда в некоторой окрестности точки x^0 существует единственная система непрерывных функций $u_i = f_i(x)$ такая, что $u_i^0 = f_i(x^0)$, удовлетворяющая системе уравнений $F_i(x;u) = 0, i = 1, \dots m$.

Если, кроме того, частные производные $(F_i)'_{x_k}$, k=1,2...n непрерывны в точке (x^0,u^0) , то в точке x^0 существуют все частные производные функции $u_i=f_i(x)$, i=1...m, причем

$$\begin{pmatrix} (f_1)'_{x_1} & \dots & (f_1)'_{x_n} \\ \vdots & \vdots & \vdots \\ (f_m)'_{x_1} & \dots & (F_m)'_{x_n} \end{pmatrix} = - \begin{pmatrix} (F_1)'_{u_1} & \dots & (F_1)'_{u_m} \\ \vdots & \vdots & \vdots \\ (F_m)'_{u_1} & \dots & (F_m)'_{u_m} \end{pmatrix}^{-1} \begin{pmatrix} (F_1)'_{x_1} & \dots & (F_1)'_{x_n} \\ \vdots & \vdots & \vdots \\ (F_m)'_{x_1} & \dots & (F_m)'_{x_n} \end{pmatrix}.$$

Если же частные производные функций F_i непрерывны в окрестности точки (x^0, u^0) , то функции $u_i = f_i(x)$ будут непрерывно дифференцируемыми в окрестности x^0 .

Домашнее задание на 18.11

- 1. Найдите в точке (0;1) частные производные функции u=f(x;y), заданной неявно уравнением $u^3+3xyu+1=0$.
- 2. Найдите в точке (1;0;1;-2) частные производные функций $u=f_1(x;y)$ и $v=f_2(x;y)$, заданных неявно системой уравнений:

$$\begin{cases} xu + yv - u^3 = 0; \\ x + y + u + v = 0. \end{cases}$$

- 3. Пусть f(u;v) дифференцируемая в \mathbb{R}^2 функция, $u=xy,\,v=x^2-y^2.$ Выразите $\frac{\partial f}{\partial x}$ и $\frac{\partial f}{\partial y}$ через $\frac{\partial f}{\partial u}$ и $\frac{\partial f}{\partial v}$.
- 4. Докажите, что если функция f(x) дифференцируема, то функция $\varphi(x;y) := e^y f\left(ye^{\frac{x^2}{2y^2}}\right)$ удовлетворяет уравнению $(x^2-y^2)\frac{\partial \varphi}{\partial x} + xy\frac{\partial \varphi}{\partial y} = xy\varphi$.

Занятие 7. 18.10. Замена переменной

Производная сложной функции: пусть функции u(x;y) и v(x;y) определены в некоторой окрестности точки (x_0,y_0) , а функция f(u,v) определена в некоторой окрестности точки $(u_0,v_0)=(u(x_0,y_0),v(x_0,y_0))$. Если функция f(u;v) дифференцируема в точке (u_0,v_0) и если в точке (x_0,y_0) существуют производные $\frac{\partial u}{\partial x},\frac{\partial v}{\partial y},\frac{\partial v}{\partial x},\frac{\partial v}{\partial y}$, то в точке (x_0,y_0) существуют частные производные сложной функции f(u(x;y);v(x;y)), причем

$$\frac{\partial f}{\partial x} = \frac{\partial f}{\partial u} \frac{\partial u}{\partial x} + \frac{\partial f}{\partial v} \frac{\partial v}{\partial x}.$$

Аналогичные формулы при соответствующих предположениях справедливы для частных производных $\frac{\partial f}{\partial x_i}$ сложной функции $f(u_1; u_2; \dots; u_n)$, где u_k — функции переменных x_i :

$$\frac{\partial f}{\partial x_i} = \sum_{k=1}^n \frac{\partial f}{\partial u_k} \frac{\partial u_k}{\partial x_i}, \ i = 1, 2, \dots, m.$$

- 1. $f(u) = e^{\sin u}$, $u(x) = \cos x$. Найдите df/dx.
- 2. Преобразуйте уравнение $(x+y)\frac{\partial z}{\partial x}-(x-y)\frac{\partial z}{\partial y}=0$, перейдя к новым независимым переменным $u=\ln\sqrt{x^2+y^2}$, $v=\arctan\frac{y}{x}$.
- 3. Решите уравнение $\frac{\partial z}{\partial x}=\frac{\partial z}{\partial y},$ преобразовав его, если $\xi=x+y, \eta=x-y.$
- 4. Преобразуйте уравнение $xu'_y yu'_x = 0$, перейдя к полярным координатам.
- 5. Преобразуйте уравнение $x^2 \frac{\partial z}{\partial x} + y^2 \frac{\partial z}{\partial y} = z^2$, $xyz \neq 0$, приняв за новые переменные u = x, v = 1/y 1/x, а за новую функцию $\omega = 1/z 1/x$.
- 6. Преобразуйте уравнение $x \frac{\partial^2 z}{\partial x \partial y} y \frac{\partial^2 z}{\partial y^2} \frac{\partial z}{\partial y} = 0$, приняв за новые переменные u = x, v = xy.
- 7. Найти производную $\frac{dy}{dx}$ кардиоиды, заданной уравнением $r=f(\theta)=a(1+\cos\theta)$. (Полярные координаты связаны с декартовыми соотношением $x=r\cos\theta, y=r\sin\theta$.)

Занятие 9-10. 15.11-22.11. Условные экстремумы

Произвольная ссылка в интернете.

На паре мы успели:

- 1. Найдите все стационарные точки функции $u = x^4 + y^4 2x^2$ и исследуйте её на экстремум (Alarm аккуратно с достаточными условиями)
- 2. Исследовать на экстремум каждую непрерывно дифференцируемую функцию, заданную неявно уравнением $x^2 + y^2 + u^2 + 2x 2y + 4u 3 = 0$
- 3. Найдите условные экстремумы функции u = f(x; y) = 6 5x 4y на окружности с центром в (0; 0) и радиусом 3.

Будем делать в следующий раз:

- 4. Найдите условные экстремумы функции u = f(x; y) = 6 5x 4y относительно уравнений связи $\varphi(x; y) = x^2 y^2 9 = 0$.
- 5. Найдите экстремальную точку $u = x + \frac{y^2}{4x} + \frac{z^2}{y} + \frac{2}{z}, x > 0, y > 0, z > 0.$
- 6. Найдите условные экстремумы функции u = xyz относительно уравнений связи x + y + z = 6 и x + 2y + 3z = 6.
- 7. Найдите наибольшее и наименьшее значение функции $u=x^2-2ax+y^2-2ay+z^2-2az$ (a>0) в полушаре $D=\{(x;y;z)|x^2+y^2+z^2\leq 4a^2,z\geq 0.$
- 8. Исследуйте на экстремумы функцию $x_1 + \frac{x_2}{x_3} + \dots \frac{2}{x_n}, \, x \in \mathbb{R}^n, \, x_k > 0, \, k = 1, 2, \dots, n$

Домашнее задание к 26.11 23:59

- 1. Исследовать на экстремум непрерывно дифференцируемую функцию u=u(x;y) заданную неявно условиями $x^2+y^2+u^2-4x-6y-4u+8=0, u>2$
- 2. Найдите в точке (1;2) частные производные дифференцируемых функций u(x,y) и v(x,y), заданных неявно уравнениями $xe^{u+v}+2uv=1, ye^{u-v}-\frac{u}{1+v}=2x, u(1;2)=v(1;2)=0.$
- 3. Найдите наибольшее и наименьшее значения функции u = x + 2y + 3z на множестве $x + y \le 3, x + y \le z, 3x + 3y \ge z, x \ge 0, y \ge 0$.
- 4. Найдите наибольшее и наименьшее значения функции $u = |x+y| \sqrt{1-x^2-y^2}.$
- 5. Найдите наименьшую площадь треугольника, описанного около эллипса с полуосями a и b так, что одна из сторон треугольника параллельна большой оси эллипса.

Занятие 11. 29.11.2017

- 1. Пусть A множество точек в [0;1] таких, что $x \in A$ тогда и только тогда, когда в десятичной записи x отсутствует 7. Покажите, что у A лебегова мера 0.
- 2. Пусть $B \subset \mathbb{R}$ множество всех чисел таких, что в десятичной записи после запятой отсутствует 7. Какая мера у этого множества?
- 3. Найдите лебегову меру множества точек [0;1] таких, что в их десятичной записи присутствуют все цифры.
- 4. Пусть $f:[0;a] \to \mathbb{R}$ измеримая функция. Покажите, что существует монотонно убывающая функция g на [0;a] такая, что для любого вещественного y выполняется

$$m(\{x \in [0; a] : f(x) > y\}) = m(\{x \in [0; a] : g(x) > y\}).$$

5. Для последовательности измеримых функций $\{f_n\}$ на множестве A конечной меры, покажите что

$$\lim_{n\to\infty} \int_A \frac{|f_n|}{1+|f_n|} dm = 0.$$

тогда и только тогда, когда $\{f_n\}$ сходится к 0 по мере. Приведите пример того, что нельзя опустить условие $m(A) < \infty$.

- 6. А правда, что любая монотонная функция измерима по Лебегу?
- 7. Рассмотрим множество A представителей классов эквивалентности окружности единичной длины относительно сдвигов на рациональные числа (то есть никакие два элемента A не отличаются сдвигом на рациональное число). Покажите, что множество A неизмеримо.

Подсказка: Покажите, что $m(A) \neq 0$. Покажите, что $m(A) \neq c$ для c > 0.

Занятие 12. 6 декабря 2017-го года

Множество $X \subset \mathbb{R}^2$ элементарное относительно оси Oy, если

$$X = \{(x; y) : a \le x \le b, \varphi \le y \le \psi(x)\},\$$

где φ , ψ непрерывны на [a,b] и $\varphi(x)\psi(x)$ на [a;b].

Если функция f интегрируема на множестве X, элементарном относительно Oy, то

$$\iint_X f(x;y)dxdy = \int_a^b dx \int_{\varphi(x)}^{\psi(x)} f(x;y)dy.$$

(для элементарного относительно Oy, соответственно, $\iint_X f(x;y) dx dy = \int_c^d dy \int_{\alpha(x)}^{\beta(x)} f(x;y) dx.$) Множество X, элементарное относительно обеих осей, называют **элементарным**. Для элементарного множества, очевидно, выполняется $\int_a^b dx \int_{\varphi(x)}^{\psi(x)} f(x;y) dy = \int_c^d dy \int_{\alpha(x)}^{\beta(x)} f(x;y) dx$ (изменили порядок интегрирования).

А можно и не на плоскости: для

$$X = \{(x_1, x_2, \dots, x_n) : (x_1, \dots, x_{n-1}) \in X', \alpha(x_1, \dots, x_{n-1}) \le x_n \le \beta(x_1, \dots, x_{n-1})\}$$

верно

$$\int_{X} f(x_1, \dots, x_n) dx_1 \dots dx_n = \int_{X'} dx_1 \dots dx_{n-1} \int_{\alpha(x_1, \dots, x_{n-1})}^{\beta(x_1, \dots, x_{n-1})} f(x_1, \dots, x_n) dx_n$$

(X' — проекция X на подпространство $Ox_1,\ldots,x_{n-1})$

(f д.б. интегрируема на X (т.е. в частности существует X_0 : $\mu(X_0)=0$ и f ограничена на $X\setminus X_0$).

1. Пусть $X_n = [n-1; n] \times [0; n], n \in \mathbb{N}$. Докажите, что

$$\lim_{n \to \infty} \iint_{X_n} e^{-x_1 x_2^2} dx_1 dx_2 = 0.$$

- 2. Вычислите $\iint_{X_i} f_j(x;y) dx dy$
 - (a) $f_1(x;y) = (1+x+y)^{-2}$, X_1 треугольник, ограниченный прямыми x = 2y, y = 2x, x + y = 6;
 - (b) $f_2(x;y) = y^2$, множество X_2 ограничено линиями $x = y^2$, y = x 2;
 - (c) $f_3(x;y) = x$, множество X_3 задано неравенствами $2rx \le x^2 + y^2 \le R^2$, 0 < 2r < R.
- 3. Поменяйте порядок интегрирования в повторном интеграле $\int_0^{\pi} dx \int_0^{2\sin x} f(x;y) dy$
- 4. Вычислите $\int_0^1 dx \int_x^1 \sqrt[4]{1-y^2} dy$
- 5. Вычислите $\iiint_{X_i} f_j(x;y;z) dx dy dz$, где
 - (a) $f_1(x;y;z) = x + y + z$, множество X_1 ограничено плоскостями x = 0, y = 0, z = 0, x + y + z = 1;
 - (b) $f_2(x;y;z) = y$, множество X_2 задано неравенствами $|x| \le z, \ 0 \le z \le 1, \ z \le y, \ x^2 + y^2 + z^2 \le 4$.
- 6. Вычислите $\iiint_G \frac{dxdydz}{(x+y+z)^3}$, где G множество, ограниченное плоскостями $4x+3z=12, \, 4x+z=4, \, 4y+3z=12, \, 4y+z=4, \, z=0$