Занятие 13. Замена переменных в кратных интегралах. Несобственные кратные интегралы. 13 декабря 2017 г.

Замена переменных в кратных интегралах

Пусть $X,U\subset\mathbb{R}^n$ — измеримые области, φ — отображение из \overline{U} на \overline{X} такое, что

- 1. φ взаимно однозначна на U;
- 2. φ непрерывно дифференцируема на \overline{U} .

Если функция f(x) интегрируема на X, то функция $f(\varphi(u))|J(u)|$ интегрируема на U и

$$\int_X f(x)dx = \int_U f(\varphi(u))|J(u)|du,$$

где

$$J(u) = \frac{\partial(\varphi_1, \dots, \varphi_n)}{\partial(u_1, \dots u_n)} = \det \varphi'(u) = \begin{vmatrix} \frac{\partial \varphi_1}{\partial u_1} & \dots & \frac{\partial \varphi_1}{\partial u_n} \\ \dots & \dots & \dots \\ \frac{\partial \varphi_n}{\partial u_1} & \dots & \frac{\partial \varphi_n}{\partial u_n} \end{vmatrix}.$$

Если отображение задано обратной системой функций

$$u_i := \psi_i(x_1, \ldots, x_n),$$

то в точке $u^0 = \psi(x^0)$ якобиан можно найти по формуле

$$J(u^{0}) = \left(\frac{\partial(\psi_{1}, \dots, \psi_{n})}{\partial(x_{1}, \dots, x_{n})}(x^{0})\right)^{-1} = (\det \psi'(x^{0}))^{-1},$$

если $\psi'(x^0)$ существует. Для полярных координат на плоскости $x=r\cos\varphi,\,y=r\sin\varphi,\,J=\dots r$. Для сферических координат $x=r\cos\varphi\cos\psi,\,y=r\sin\varphi\cos\psi,\,z=r\sin\psi,\,J=r^2\cos\psi,$ для цилиндрических координат $x=r\cos\varphi,\,y=r\sin\varphi,\,z=z,\,J=r$.

Несобственные кратные интегралы

Пусть G — открытое множество в \mathbb{R}^n . Последовательность открытых измеримых множеств $G_k, k=1,2,\ldots$ называют **исчерпывающей** множество G, если 1). $\overline{G_k} \subset G_{k+1}, k=1,2,\ldots$ 2). $\bigcup_{k=1}^{\infty} G_k = G$.

Пусть для любой последовательности исчерпывающих G множеств G_k , $k=1,2,\ldots$, существует предел, не зависящий от выбора последовательности G_k , $k=1,2,\ldots$, тогда этот предел называют **несобственным интегралом** от f на G и обозначают

$$\int_{G} f(x)dx = \lim_{k \to \infty} \int_{G_{k}} f(x)dx,$$

а функцию f называют интегрируемой в несобственном смысле на G. Если этот символ так определен, то интеграл назывыают **сходящимся**. В противном случае, **расходящимся**.

Сходящиеся несобственные интегралы обладают свойствами линейности, аддитивности по множествам, сохраняют знак неравенства при интегрировании, для них справедлива формула замены переменной и т.д.

Если функция f неотрицательна на G, то для любой последовательности $\{G_k\}$, исчерпывающей G, существует конечный или бесконечный предел $\lim_{k\to\infty}\int_{G_k}f(x)dx$, и он не зависит от выбора исчерпывающей последовательности. То есть для неотрицательной функции достаточно исследовать одну последовательность.

Если $0 \le f(x) \le g(x)$ на G, то из сходимости $\int_G g(x)dx$ следует сходимость $\int_G f(x)dx$, из расходимости $\int_G f(x)dx$ — расходимость $\int_G g(x)dx$.

Несобственный интеграл $\int_G f(x)dx$ называют абсолютно сходящимся, если сходится интеграл $\int_G |f(x)|dx$.

Если кратный $(n \ge 2)$ интеграл сходится, то он и абсолютно сходится.

На паре успели:

- 1. Вычислите интегралы $I_j = \iint_{X_i} f_j(x;y) dx dy$, где
 - (a) $f_1(x;y) = x$, $X_1 = \{2x \le x^2 + y^2 \le 6x, y \le x\}$;
 - (b) $f_2(x;y) = 1/y$, множество X_2 ограничено прямыми y = x, y = 2x, y = 1 x/2, y = 4 2x.
- 2. Докажите сходимость интеграла $\int_{\mathbb{R}^2} e^{-(x^2+y^2)} dx dy$ и найдите его значение. [Осталось на дом:]
- 3. $\int_{-a}^{a} dx \int_{0}^{\sqrt{a^2 x^2}} f(\sqrt{x^2 + y^2}) dy$
- 4. $\iint_G \frac{y}{x^2} dx dy$, $G = \{0 < x, x^3 \le y \le x^2\}$

5. Вычислите интегралы $\iiint_{X_j} f_j(x;y;z) dx dy dz,$ где

(a)
$$f_1(x;y;z) = \frac{x^2+y^2}{\sqrt{x^2+y^2+z^2}}, X_1 = \{\sqrt{x^2+y^2} \le z \le a\};$$

(b)
$$f_2(x; y; y) = 1, x_2 = \{(x^2 + y^2 + z^2)^2 \le xyz, x \ge 0, y \ge 0\};$$

(c)
$$f_4(x;y;z) = z$$
, $X_4 = \{(x-y)^2 + (y-z)^2 \le R^2, 0 \le x+y+z \le h\}$