Планарные графы.(ДЗ)

28 марта 2017 г.

- 1. С помощью леммы Жордана доказать непланарность графа $K_{3,3}$.
- 2. Доказать, что число пересечений двудольного графа $K_{2s,2t}$, построенного на 2s+2t вершинах, ограничено сверху величиной s(s-1)t(t-1). Как изменится этот результат в случае, когда в одной или в обеих долях присутствует нечетное количество вершин?
- 3. В процессе доказательства непланарности графов K_5 и $K_{3,3}$ мы показали, что графы $K_5 \setminus e$ и $K_{3,3} \setminus e$ являются максимальными планарными графами. Заметим, что правильные вложения в плоскость обоих этих графов представляют собой некоторую триангуляцию плоскости. Доказать, что данный факт справедлив и в общем случае, а именно, что любой простой максимально простой граф, построенный на $n \geq 3$ вершинах, представляет собой некоторую триангуляцию плоскости.
- 4. Доказать, что любой граф G, содержащий не более чем три цикла, является планарным.
- 5. Плоский граф \tilde{G} называется самодвойственным, если \tilde{G} изоморфен \tilde{G}^* . Построить два бесконечных семейства самодвойственных графов.
- 6. Доказать, что не существует плоского графа \tilde{G} , имеющего ровно пять граней, каждая пара из которых имеет общее ребро.
- 7. Доказать, что плоский граф \tilde{G} является двудольным тогда и только тогда, когда двойственный к нему граф \tilde{G}^* является плоским эйлеровым графом.
- 8. Доказать, что удалению в плоском связном графе \tilde{G} ребра e, не являющегося мостом, отвечает стягивание ребра e^* в \tilde{G}^* . Кроме

того, показать, что если e не является петлей в исходном графе \tilde{G} , то стягиванию e в \tilde{G} отвечает удаление ребра e^* в \tilde{G}^* .