Randomization and derandomization

- 1. Give a randomized FPT algorithm for the problem of deciding whether a given undirected graph contains a cycle of length at least k. Your algorithm should have running time $c^k n^{O(1)}$. Note that a graph may not have any cycle of length exactly k, but contain a much longer cycle. Derandomize your algorithm using perfect hash families.
- 2. A graph *H* is called *r*-colorable if there exists a function $\chi : V(H) \to [r]$ such that $\chi(u) \neq \chi(v)$ for every $uv \in E(H)$. Consider the following problem: given a perfect graph G and integers *k* and *r*, check whether *G* admits an *r*-colorable induced subgraph on at least *k* vertices. Show an algorithm for this problem with running time $f(k; r)n^{O(1)}$. You could use the fact that we can find a maximum independent set in perfect graphs in polynomial time.
- 3. In the Pseudo Achromatic Number problem, we are given an undirected graph G and a positive integer k, and the goal is to check whether the vertices of G can be partitioned into k groups such that every two groups are connected by an edge. Obtain a randomized algorithm for Pseudo Achromatic Number running in time $2^{O(k^2 \log k)} n^{O(1)}$.
- 4. Consider a slightly different approach for Subgraph Isomorphism on graphs of bounded degree, where we randomly color vertices (instead of edges) with two colors.
 - Show that this approach leads to $2^{(d+1)k}k!n^{O(1)}$ -time Monte Carlo algorithm with false negatives.
 - Improve the dependency on d in running time of the algorithm to $d^{O(k)}k!n^{O(1)}$.
- 5. Show that, for every $n, \ell \geq 2$, any $(n, 2, \ell)$ -splitter needs to contain at least $\log_{\ell} n$ elements. In other words, show that the $\log n$ dependency in the size bound of splitter is optimal.
- 6. Give a deterministic version of the first algorithm developed in Exercise 3. Your algorithm should run in time $2^{(d+1)k+o(dk)}k!n^{O(1)}$.