
Chapter 1

Basics of formal languages

1.2 Strings and languages

1.2.1 Strings

Alphabet: a collection of indivisible symbols, from which the strings are built. Typically
finite. Usually denoted by the letter Σ.

Examples of alphabets:

• The Latin alphabet with a space: {a, . . . , z, ␣}.

• The alphabet of English words: Σ = {a, aback, abaft, abandon, . . . , zoom}.

• The alphabet of the C++ programming language consists of 96 characters, including the
following 91 graphical characters,

a b c d e f g h i j k l m n o p q r s t u v w x y z
A B C D E F G H I J K L M N O P Q R S T U V W X Y Z
0 1 2 3 4 5 6 7 8 9
_ { } [ ] # ( ) < > % : ; . ? * + - / ^ & | ~ ! = , \ " ’

as well as the space character, horizontal tab, vertical tab, form feed and new-line.

• The alphabet of C++ tokens.

• The binary alphabet {a, b}.

• The unary alphabet {a}.

In abstract examples, elements of Σ are typically denoted by lower-case Latin letters from
the beginning of the alphabet (a, b, . . .).

A string over an alphabet Σ is a finite sequence a1 . . . a` of symbols from Σ, where ` > 0 and
a1, . . . , a` ∈ Σ. The number of symbols in the string is known as its length and is denoted by
|a1 . . . a`| = `. The letters w, u, v, x, y and z are most commonly used to denote strings.

The unique string of length zero is denoted by ε.
Number of occurrences of a symbol a in a string w is denoted by |w|a.
The set of all strings over an alphabet Σ is denoted by Σ∗.
The concatenation of two strings, u and v, is the string u · v = uv.
Notation for concatenation of multiple strings:

∏n
i=1wi = w1 . . . wn. Powers of concatenation:

for every n > 0, wn =
∏n

i=1w = w · . . . · w. Assume w0 = ε for every w ∈ Σ∗.
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The reversal of a string w ∈ Σ∗, denoted by wR, is formed of the same symbols, written
backwards: (a1 . . . a`)

R = a` . . . a1. In particular, εR = ε. If w = wR for some string w, this
string is called a palindrome.

A homomorphism between strings over alphabets Σ and Ω is a mapping h : Σ∗ → Ω∗ that
satisfies h(u·v) = h(u)·h(v) for all u, v ∈ Σ∗. An injective homomorphism, for which h(u) = h(v)
implies u = v, is called a code. A code h : Σ∗ → Ω∗ has a corresponding decoding function,
h−1 : Ω∗ → Σ∗.

Alternative terminology. Pure mathematicians, especially those in combinatorics, often call
a string a word. Symbols may also be called letters. The empty string is occasionally denoted
by λ, Λ or 1, where the latter notation means an algebraic identity.

1.2.2 Languages

Any subset of Σ∗ is called a language over Σ. The set of all languages is thus the set of all
subsets of Σ∗, denoted by 2Σ∗ . The letters L,K,M,N are typically used to denote languages.

The concatenation of two languages, K and L, is the language {uv | u ∈ K, v ∈ L}. The
powers of concatenation are defined analogously to the case of strings:

Ln = L · . . . · L︸ ︷︷ ︸
n times

= {w1 . . . wn | wi ∈ L}.

In particular, L0 = {ε}.
Since languages are sets, all Boolean set-theoretic operations are applicable to them. For a

language L over an alphabet Σ, its complement is the language Σ∗ \ L.
The set Σ∗ forms a semiring with concatenation as product and union as sum, with identity

{ε} and with zero ∅. That is, concatenation is associative ((KL)M = K(LM) for all K,L,M ∈
Σ∗) and it is distributive over union: K(L ∪M) = KL ∪ KM and (K ∪ L)M = KM ∪ LM .
Concatenation of languages is not commutative.

Example 1.1. The set of English words is a formal language over the alphabet {a, . . . , z,′ }. It
is finite.

Example 1.2. The set of well-formed English sentences is a formal language over the alphabet
{a, . . . , z,′ }, expanded with a few punctuation signs. It is infinite.

Example 1.3. The set of well-formed programs in C++ is a formal language over the 96-symbol
alphabet defined above. It is infinite.

Example 1.4. The language { anbn | n > 0}.

Example 1.5. Let Σ = {a, b} and let the symbols a and b represent a left bracket
and a right bracket, respectively. Then the language of well-nested parentheses D =
{ε, ab, aabb, abab, aabbab, abaabb, . . .} is known as the Dyck language. It is named in honour
of Walther von Dyck.

The iteration of a language, also known as Kleene star :

L∗ =
⋃
n>0

Ln = {w1 . . . wn | n > 0, wi ∈ L}.

Define L+ = L · L∗. Note that ∅∗ = {ε} and ∅+ = ∅.

Example 1.6. Let L be the set of well-formed English sentences. Then, L+ is the set of well-
formed English texts.



Basics of formal languages 3

Example 1.7. Let D be the Dyck language. Then, D∗ = D.

Reversal of a language LR = {wR | w ∈ L}.

Example 1.8. Let L be the set of well-formed English sentences. Then, L ∩ LR is the set of
English palindromes.

The right- and left-quotient of languages:

K · L−1 = {u | ∃v ∈ L : uv ∈ K}
L−1 ·K = { v | ∃u ∈ L : uv ∈ K}

NB: K ·L−1 and L−1 ·K should be regarded as indivisible symbols for functions of two language
arguments. There is no such thing as “L−1”.

Homomorphic images of languages: let h : Σ∗ → Ω∗ be a homomorphism between strings
over alphabets Σ and Ω, and define the function h : 2Σ∗ → 2Ω∗ by h(L) = {h(w) |w ∈ L}. Also,
regardless of whether h is a code or not, one can define the set of pre-images of h as a function
h−1 : 2Γ∗ → 2Σ∗ with h−1(K) = {w | h(w) ∈ K} for every K ⊆ Γ∗.

1.3 Finite automata and regular expressions

Finite automaton: the simplest model of computation. Useful, in particular, for the simplest
kind of parsing, breaking a strings into elementary substrings (tokens), basically a text into
words.

1.3.1 Deterministic finite automata (DFA)

A model of computation with finite memory. Each finite automaton has a fixed amount of
internal states, and has to use them to process input strings of unbounded length. The strings
are read from left to right, symbol by symbol, by a reading head that can see one input symbol
at a time. The automaton begins its computation on an input string in a certain initial state
q0, with the reading head scanning the leftmost symbol of the input string. At each step of the
computation, the automaton determines its next state on the basis of its current state and the
symbol currently scanned, and moves to the next input symbol to the right, entering the chosen
new state. Once the rightmost symbol is processed, the resulting state of the automaton is used
to determine whether the string is considered accepted or rejected.

Definition 1.1 (Kleene [1956]). A deterministic finite automaton (DFA) is a quintuple A =
(Σ, Q, q0, δ, F ), where

• Σ is an input alphabet;

• Q is a finite nonempty set of states;

• q0 ∈ Q is the initial state;

• δ : Q× Σ→ Q is the transition function;

• F ⊆ Q is the set of accepting states (also called final states).

The transition function is extended to δ : Q × Σ∗ → Q as follows: δ(q, ε) = q, δ(q, aw) =
δ(δ(q, a), w). The language recognized by a DFA is defined as L(A) = {w ∈ Σ∗ | δ(q0, w) ∈ F}.
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Example 1.9. The following DFA over the alphabet Σ = {a, b}, presented in Figure 1.1, recog-
nizes the language {w |w ∈ {a, b}∗, |w|a ≡ 2 (mod 3)}. It uses the set of states Q = {q0, q1, q2},
where q0 is the initial state, and has the transition function given in the table below.

δ a b

q0 q1 q0

q1 q2 q1

q2 q0 q2

The set of accepting states is F = {q2}.

q0 q1 q2

b

aa

b b

a

Figure 1.1: The DFA from Example 1.9, which counts modulo 3.

1.3.2 Nondeterministic finite automata (NFA)

Nondeterminism: may have multiple actions listed. Accordingly, multiple computations.
Accepts a string if any of these computations is accepting.

Definition 1.2 (Rabin and Scott [1]). A nondeterministic finite automaton (NFA) is a quintuple
B = (Σ, Q,Q0, δ, F ), where Σ, Q, F are as in a DFA,

• there is a set of initial states Q0 ⊆ Q, and

• and the transition function is defined as δ : Q× Σ→ 2Q.

The language recognized by an NFA is defined as

L(B) = { a1 . . . an | ai ∈ Σ, ∃r0, . . . , rn ∈ Q : r0 = q0, ri ∈ δ(ri−1, ai), rn ∈ F}.

A DFA can be regarded as a special case of an NFA with |δ(q, a)| = 1 for all q and a.

Example 1.10. The language of all strings over the alphabet Σ = {a, b} that have the third last
symbol equal to a is recognized by an NFA with the set of states Q = {q0, q1, q2, q3}, where q0 is
the initial states, and with the following transition table:

δ a b

q0 {q0, q1} {q0}
q1 {q2} {q2}
q2 {q3} {q3}
q3 ∅ ∅

The set of accepting states is F = {q3}.

This NFA operates by looping in the state q0 until it eventually guesses that the next symbol
a is the third last symbol of the input, and accordingly moves to the state q1. The transitions
in the states q1, q2, q3 verify the guess by counting the remaining symbols and accepting if there
are exactly two symbols after the guessed instance of a.
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q0 q1 q2 q3

a,b

a,b a,ba

Figure 1.2: The NFA from Example 1.10, which guesses the third last symbol and then verifies
the guess.

1.3.3 The subset construction

Lemma 1.1 (The subset construction, Rabin and Scott [1]). Let B = (Σ, Q,Q0, δ, F ) be an
NFA. Then the DFA A = (Σ, 2Q, Q0, δ

′, F ′) with δ′(s, a) =
⋃

q∈s δ(q, a) for all s ⊆ Q and a ∈ Σ
and with F ′ = { s | s ⊆ Q, s ∩ F 6= ∅} recognizes the same language as B.

Idea of the proof. Upon reading a string w, A computes the set of states reached in all possible
computations of B on w.

Example 1.11. The subset construction applied to the NFA from Example 1.10 produces a DFA
shown in Figure 1.3.

{q0,q1} {q0,q1,q2} {q0,q1,q2,q3}

{q0,q2}

{q0,q3}

{q0,q1,q3} {q0,q2,q3}

{q0} a a a

b
a

b

b

a
bb

a

b

a

b a

b

Figure 1.3: A DFA simulating the NFA from Example 1.10, obtained by the subset constructions
(all states containing q3 are accepting).

Theorem 1.1. DFA and NFA recognize the same family of languages.

(called the regular languages)

1.3.4 Nondeterministic finite automata with ε transitions

NFAs with ε transitions, known as ε-NFAs, have a transition function

δ : Q× (Σ ∪ {ε})→ 2Q

An ε-NFA C recognizes the following language:

L(C) = {u1 . . . un | ui ∈ Σ ∪ {ε}, ∃r0, . . . , rn ∈ Q : r0 = q0, ri ∈ δ(ri−1, ui), rn ∈ F}.

Lemma 1.2. Let C = (Σ, Q, q0, δ, F ) be an ε-NFA. For every state q ∈ Q, let Closure(q) ⊆
Q be the set of states reachable from q by zero or more ε-transitions. Then the NFA B =
(Σ, Q, q0, δ

′, F ′) with δ′(q, a) = { δ(q′, a) | q′ ∈ Closure(q)} for all q ∈ Q and a ∈ Σ and with
F ′ = { q | Closure(q) ∩ F 6= ∅} recognizes the same language as C.

Idea of the proof. The transition function δ′ simulates a sequence of ε-transitions followed by a
transition by an input symbol. The set of accepting states F ′ represents acceptance in all states,
from which one can reach an accepting state by a sequence of ε-transitions.
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1.3.5 Regular expressions

Regular expressions are expressions over constant languages ∅, {ε} and {a} (for all a ∈ Σ),
connected using union, concatenation and iteration (the Kleene star operator).

More formally, regular expressions can be defined as follows.

Definition 1.3 (Kleene [1956]). • ∅ is a regular expression;

• for every symbol a ∈ Σ, a is a regular expression;

• if α and β are regular expressions, then so are α | β, α · β and α∗.
Language defined by an expression: L(∅) = ∅, L(a) = {a}, L(α | β) = L(α) ∪ L(β),

L(α · β) = L(α) · L(β), L(α∗) = L(α)∗.

The default precedence of operations is the following: the star has the highest precedence,
followed by the concatenation, while the precedence of the union is the lowest. For instance,
(a ∪ bc∗)d should be read as (a ∪ (b(c∗)))d.

Further redundant notation: ε = ∅∗, α+ = α∗α.

Example 1.12 (cf. Example 1.10). The set of all strings over the alphabet Σ = {a, b} with the
third last symbol equal to a is defined by the regular expression (a | b)∗a(a | b)(a | b).
Theorem 1.2 (Kleene’s theorem [1956]). A language is recognized by a DFA if and only if it is
defined by a regular expression.

The set of languages representable by these equivalent formalisms is known as the family of
regular languages, and any such language is called a regular language.

Lemma 1.3. For every regular expression, there exists an ε-NFA recognizing the language defined
by this expression.

Sketch of a proof. The construction of an ε-NFA equivalent to a given regular expression is done
inductively on the structure of the expression. The constructed ε-NFA shall have a unique initial
state and a unique accepting state.

The below figure gives ε-NFAs for the three base cases of regular expressions, as well as
the three cases of the induction step (where α and β are smaller regular expressions, for which
ε-NFAs exist by the induction hypothesis).

Conversely, every finite automaton can be transformed to an equivalent regular expression.
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Lemma 1.4. For every ε-NFA there exists an equivalent regular expression.

Idea of the proof. Without loss of generality, assume that the given ε-NFA has a unique accepting
state, which is different from the initial state (one can use ε-transitions to ensure that).

Consider a more expressive model than an ε-NFA, in which every transition is labelled with
a regular expression. This can be defined as a quintuple C = (Σ, Q, q0, R, qacc), where R is a
finite set of triples (q, α, q′), with q, q′ ∈ Q and with a regular expression α, and every such triple
is a transition upon reading any string in L(α). The language defined by such a model is

L(C) = {u1 . . . un|ui ∈ Σ∗,∃r0, . . . , rn ∈ Q : r0 = q0, rn = qacc, (qi−1, αi, qi) ∈ R and ui ∈ L(αi) for all i}.

The proof is by constructing a sequence of RE-NFAs, in which all states, except the initial
and the accepting states, are eliminated one by one, at the expense of increasing the size of
regular expressions used on the transitions.

Consider the left picture: in order to remove the state q, for each incoming transition labelled
by α and for each outgoing transition labelled by β, a new transition from q′ to q′′ labelled with
the regular expression αθ∗β is added. These new transitions handle all uses of the state q in all
computations, and then q can be removed.

If there are two transitions between any two states, labelled by α and β, they are replaced
by a single transition labelled by the regular expression α | β.

Eventually all states except the initial and the accepting ones will be eliminated, and the
automaton will be as in the right figure. Then it is equivalent to the regular expression η∗α(θ ∪
βη∗α)∗.

Example 1.13. Consider the DFA from Example 1.9. At the first step of the transformation,
the state q1 is eliminated, and the path from q0 to q1 is replaced with the regular expresion b∗ab∗;
the resulting RE-NFA is given in Figure 1.4. It is then transformed to the regular expression
b∗ab∗a(b | ab∗ab∗a)∗.

q0 q2

b

ab*a

b

a

Figure 1.4: Transforming the DFA from Example 1.9 to a regular expression.

1.3.6 Closure properties

Let L ⊆ 2Σ∗ be a family of languages, let f : 2Σ∗× . . .×2Σ∗ → 2Σ∗ be an n-argument function
on languages. Then, L is said to be closed under f if the value of f on any arguments from L
belongs to L as well, that is, that L1, . . . , Ln ∈ L implies f(L1, . . . , Ln) ∈ L.

Theorem 1.3. The family of regular languages are closed under all Boolean operations, concate-
nation and star.
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Union, concatenation, star: direct by regular expressions.
Complementation: through DFA as follows.

Lemma 1.5. For every DFA A = (Σ, Q, q0, δ, F ), the DFA A = (Σ, Q, q0, δ, Q \ F ) recognizes
the complement of L(A).

Note that this construction does not work for NFAs. In fact, examples of n-state NFAs are
known, whose complement requires an NFA of 2n states.

Closure under intersection: using de Morgan’s law K ∩L = K ∪ L and the closure of regular
languages under complementation and union.

Alternatively, one can use a direct construction of a DFA which simulates two given DFA
and accepts their intersection:

Lemma 1.6 (The direct product construction). For every DFA A = (Σ, Q, q0, δ, F ) and B =
(Σ, R, r0, η, F

′), the DFA (Σ, Q × R, (q0, r0), θ, F × F ′), in which θ((q, r), a) = (δ(q, a), η(r, a))
recognizes the intersection of L(A) and L(B).

The same construction works for NFAs.

1.3.7 Limitations of regular languages

Example 1.14. The language { anbn | n > 0} is not regular.

Proof. Suppose there is a DFA A for this language and consider the states qi = δ(q0, a
i) reached

by the DFA after reading each string ai with i > 0, Since there are finitely many states in the
DFA, eventually the sequence of states q0, . . . , qi, . . . will repeat itself: that is, there are numbers
0 6 i < j with qi = qj . Since aibi ∈ L(A), the state δ(qi, bi) must be in F , and accordingly
δ(qj , b

i) ∈ F . Then the string ajbi is accepted by A as well, which is a contradiction.

This reasoning extends to the following general method for proving that particular languages
are not regular.

Lemma 1.7 (The pumping lemma). For every regular language L ⊆ Σ∗ there exists a constant
p > 1, such that for every string w ∈ L with |w| > p there exists a factorization w = xyz, where
y is nonempty and |xy| 6 p, such that xykz ∈ L for all i > 0.

Proof. Let A = (Σ, Q, q0, δ, F ) be a DFA recognizing L and define p = |Q|. Consider an arbirary
string w ∈ L of length at least p and let r0, r1, . . . , r|w| ∈ Q be the computation of A on w, so
that each state ri is reached after reading i symbols of w. Since there more states that |Q| in
this sequence, there must be a pair of identical states ri = rj with 0 6 i < j 6 |w|.

Denote the first i symbols of w by x and the last |w| − j symbols of w by z, and let y be
the middle part of w, so that w = xyz and |y| = j − i. Let q = ri = rj . Then, δ(q0, x) = q,
δ(q, y) = q and δ(q, z) = r|w| ∈ F . Each string of the form xykz is then accepted by A by visiting
the state q after reading each prefix xyi.

Example 1.15. The language L = {wwR | w ∈ {a, b}∗} =
{ε, aa, bb, aaaa, abba, baab, bbbb, aaaaaa, . . .} is not regular.

Proof. Suppose it is, and let p be the constant given by the pumping lemma. Then for the string
apbbap ∈ L the lemma gives a factorization apbbap = xyz with |xy| 6 p and |y| > 1. Let x = ak,
y = a` and z = ap−k−`bbap. Then the lemma, in particular, asserts that xz = ap−`bbap /∈ L
should be in L, which is a contradiction.

Example 1.16. The hyper-text markup language (HTML) is not regular.
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Idea of a proof. Consider that the string

<html><body> <ul> . . . <ul>︸ ︷︷ ︸
i>1

</ul> . . . </ul>︸ ︷︷ ︸
j>1

</body></html>

is a valid HTML document if and only if i = j, and the language { anbn | n > 0} is not regular
(Example 1.14).

Exercises

1.3.1. Prove that the language { ambn |m 6= n} is not regular.

1.3.2. Prove that the regular languages are closed under
√
L = {w | ww ∈ L}.

1.3.3. Prove that the regular languages are closed under the cyclic shift.
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