ДЗ 3. Максимизация квадратичных форм

В этот раз было рассмотрено несколько задач минимизации или максимизации. Первая — простая — свелась просто к процессу ортогонализации. А именно, пусть дана матрица A $n \times m$, где n > m и $\operatorname{rk} A = m$, и вектор $b \in K^n$. Мы хотим найти $x \in K^m$, что Ax как можно ближе к b. Так как вектор Ax — это произвольный вектор из образа A, то задача состоит в том, чтобы спроецировать вектор b на $\operatorname{Im} A$, взять эту проекцию $y = pr_{\operatorname{Im}} Ab$ и взять $A^{-1}y$, который однозначно определён ввиду условия на максимальность ранга.

Второй вопрос состоял в том, чтобы найти максимум (или минимум) квадратичной формы q(x) по всем x, что ||x|| = 1. Эта задача возникла у нас при исследовании вопроса про углы между подпространствами.

Прежде всего мы рассмотрели ортогональный базис e_1, \ldots, e_n . В нём форма q(x) имеет вид $q(x) = \langle Ax, x \rangle$ для некоторой симметричной матрицы A. Теперь нам хочется провести замену координат и упростить матрицу A. Однако не стоит забывать про условие ||x|| = 1. Поэтому мы будем рассматривать только те преобразования, которые сохраняют норму.

Определение 1. Пусть V — евклидово пространство. Ортогональным оператором на V называется такой линейный оператор $L\colon V\to V$, что ||Lx||=||x||.

Замечание. В определении мы видим равенство двух квадратичных форм, значит равны соответствующие симметрические билинейные формы $\langle Lx, Ly \rangle = \langle x, y \rangle$. Расписав это равенство в ортонормированном базисе получаем $L^{\top}L = E$.

Лемма 1. Пусть e_1, \ldots, e_n — ортонормированный базис V. Линейный оператор, который в базисе e_i имеет матрицу, составленную из столбцов v_1, \ldots, v_n , является ортогональным тогда и только тогда, когда v_1, \ldots, v_n — ортонормированный базис K^n .

Итак, теперь ясно, как можно заменять базис, а что же по поводу симметричности? Какой инвариантный смысл имеет это условие?

Заметим, что задать билинейную форму на $h\colon V\times V\to K$ это тоже самое, что задать линейное отображение $V\to V^*$. Пусть e_1,\ldots,e_n — некоторый базис V. Тогда есть единственный двойственный базис e_1^*,\ldots,e_n^* . Матрица получившегося линейного отображения это в точности матрица билинейной формы h в базисе e_1,\ldots,e_n .

Таким образом, если форма h невырождена, то она даёт изоморфизм $V \stackrel{\sim}{\to} V^*$. Теперь вспомним, что если есть линейное отображение $A\colon V \to U$, то есть сопряжённое линейное отображение $A^*\colon U^* \to$. Причём матрица A^* есть транспонированная матрица A (в двойственных базисах).

Теперь, если h положительно определена, то для h есть ортонормированный базис. Это значит, что матрица h в этом базисе единичная. Пусть $A\colon V\to V$ — оператор. Тогда есть оператор который тоже называют сопряжённым к A и обозначают $A^*\colon V\to V$, заданный как

$$V \xrightarrow{h} V^* \xrightarrow{A^*} V^* \xrightarrow{h^{-1}} V.$$

Это что-то новое. Давайте распишем, что это за оператор такой в терминах A и h. Итак возьмём вектор $v \in V$ и отправим его в функционал $h(v, _)$. Подействуем на таком функционале честным оператором A^* — это будет $h(v, A(_))$. Теперь надо найти A^*v , что $h(A^*v, x) = h(v, Ax)$ для любого $x \in V$.

Определение 2. Пусть A — оператор на евклидовом пространстве V. Сопряжённым оператором к A называется единственный такой оператор $A^* \colon V \to V$, что $\langle A^*x,y \rangle = \langle x,Ay \rangle$ для всех $x,y \in V$.

В ортонормированном базисе его матрица — это A^{\top} . Тогда, если матрица линейного отображения в ортонормированном базисе, равна себе транспонированной, то это значит, что $A=A^*$. Распишем это равенство на языке скалярных произведений.

Определение 3. Пусть V — евклидово пространство. Самосопряжённым оператором на V называется такой линейный оператор $A\colon V\to V$, что $\langle Ax,y\rangle=\langle x,Ay\rangle$ для всех $x,y\in V$. Это тоже самое, что $A^*=A$.

Эта версия определения самосопряжённого оператора будет для нас основной. Итак, вместо квадратичной формы теперь мы работаем с самосопряжённым оператором, а для оператора, как мы знаем, самое важное — это его собственные числа.

Теорема 1. Пусть A самосопряжённый оператор на V. Тогда все собственные числа A вещественные, и существует ортонормированный базис v_1, \ldots, v_n состоящий из собственных векторов оператора A.

Наиболее частое применение этого факта в теории — это диагонализуемость оператора A. А ещё теперь мы можем найти максимум и минимум квадратичной формы.

Теорема 2. Пусть A — самосопряжённый оператор, и $q(x) = \langle Ax, x \rangle$. Тогда максимум q(x) на сфере ||x|| = 1 равен λ_{max} — максимальному собственному числу оператора A. При этом достигается максимум на собственном векторе v_{max} . Аналогично минимум достигается на v_{min} и равен λ_{min} .

Рассмотрим ещё одну геометрическую задачу. Вообще в геометрии фигуры равны, если существует изометрия пространства, переводящая одну в другую. Рассмотрим гиперповерхность в \mathbb{R}^n , заданную уравнением

$$x^{\top}Ax + B^{\top}x + C = 0.$$

Вопрос состоит в том, как бы найти координаты, чтобы вид уравнения был попроще. Однако хочется, чтобы понятие расстояния не менялось.

Прежде всего нам годится преобразование под названием параллельный перенос. Будем считать, что матрица A невырождена. Тогда с помощью параллельного переноса можно добиться, чтобы B стало равно 0.

После этого ортогональным преобразованием сделаем из матрицы A диагональную. В результате получим, что любая гиперповерхность (с невырожденной A) в подходящем ортогональном базисе задаётся уравнением

$$\sum \lambda_i x_i^2 = C.$$

Построение системы координат, в которой матрица уравнение гиперповерхности имеет такой вид называется приведением уравнения поверхности к каноническому виду. Если речь идёт только о квадратичной форме, то говорят, что её приводят к главным осям.

Задачи

Внимание! Квадратичная форма в пункте а) первом задании вырождена, поэтому предлагаю вторую, матрица которой невырождена. Балл за каждую!

Задача 1. Приведите поверхность к каноническому виду (то есть найдите подходящую цепочку замен координат). а) $x_1^2 + 2x_1x_2 - 2x_1x_3 + x_2^2 - 2x_2x_3 + x_3^2 - 2x_1 = 0$.

6) $x_1x_4 - x_2x_3 + x_1 + x_2 + x_3 + x_4 + 1 = 0.$

Задача 2. Методом наименьших квадратов решить переопределённую систему линейных уравнений:

$$\begin{cases} x_1 + x_2 - 3x_3 = -1\\ 2x_1 + x_2 - 2x_3 = 1\\ x_1 + x_2 + x_3 = 3\\ x_1 + 2x_2 - 3x_3 = 1. \end{cases}$$

Задача 3. Постройте матрицу проекции и найдите угол между подпространствами

$$\langle (1,0,0,0), (0,1,0,0,) \rangle$$
 и $\langle (1,1,1,1), (1,-1,1,-1) \rangle$.

Определение 4. Будем говорить, что оператор (не обязательно самосопряжённый) $A: V \to V$ положительно определён, неотрицательно, отрицательно определён, если квадратичная форма $q(x) = \langle Ax, x \rangle$ положительно определена, неотрицательна, отрицательно определена соответственно (то есть принимает положительные значения при $x \neq 0$, положительные и, возможно, 0, только отрицательные значения).

Задача 4. Докажите, что операторы AA^* и A^*A неотрицательны, самосопряжены и имеют одинаковые собственные числа.

Задача 5. Пусть есть самосопряжённые операторы A_1, \ldots, A_n , такие, что $A_i A_j = A_j A_i$. Покажите, что существует ортонормированный базис в котором эти операторы диагонализуются (вспомните прошлый семестр).