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Ranking methods

1 Content-based

Term-based
Semantic

2 Link-based (web search)

3 Learning to rank
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Linear algebra

C – square M ×M matrix

~x – M-dimensional vector

C~x = λ~x

λ – eigenvalue
~x – right eigenvector

~yTC = λ~yT

~y – left eigenvector

Principal eigenvector – eigenvector corresponding to the
largest eigenvalue

There are many efficient algorithms to compute eigenvalues
and eigenvectors
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Web graph

Example web graph

d0

d2 d1

d5

d3 d6

d4

car benz

ford
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honda

jaguar

jag

cat

leopard

tiger

jaguar

lion

cheetah

speed

PageRank

d0 0.05
d1 0.04
d2 0.11
d3 0.25
d4 0.21
d5 0.04
d6 0.31

PageRank(d2)<
PageRank(d6):
why?

a h

d0 0.10 0.03
d1 0.01 0.04
d2 0.12 0.33
d3 0.47 0.18
d 0.16 0.04
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Random walk

1 Start at a random page

2 Follow one of the outgoing
links from this page

3 Repeat step 2

p(di ) =
∑

j :dj→di

p(dj)

|k : dj → dk |
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Teleportation

The surfer always teleports
from a dead end to a
random page

At each step of a random
walk the surfer teleports
to a random page
with probability α

p(di ) = α
1

N

Example web graph
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PageRank

The more often a page is
visited, the better the page

In the steady state, each
page has a long-term visit
rate, called PageRank

Example web graph
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p(di ) = (1− α)
∑

j :dj→di

p(dj)

|k : dj → dk |
+ α

1

N
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Markov chains

N states

P – transition probability matrix with dimensions N × N

Pij – transition probability from i to j
∑N

j=1 Pij = 1 for all i

At each step, we are in exactly one state
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Link matrix

d0 d1 d2 d3 d4 d5 d6

d0 0 0 1 0 0 0 0
d1 0 1 1 0 0 0 0
d2 1 0 1 1 0 0 0
d3 0 0 0 1 1 0 0
d4 0 0 0 0 0 0 1
d5 0 0 0 0 0 1 1
d6 0 0 0 1 1 0 1

Manning et al., “Introduction to Information Retrieval”
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Transition probability matrix P

d0 d1 d2 d3 d4 d5 d6

d0 0.00 0.00 1.00 0.00 0.00 0.00 0.00
d1 0.00 0.50 0.50 0.00 0.00 0.00 0.00
d2 0.33 0.00 0.33 0.33 0.00 0.00 0.00
d3 0.00 0.00 0.00 0.50 0.50 0.00 0.00
d4 0.00 0.00 0.00 0.00 0.00 0.00 1.00
d5 0.00 0.00 0.00 0.00 0.00 0.50 0.50
d6 0.00 0.00 0.00 0.33 0.33 0.00 0.33

Manning et al., “Introduction to Information Retrieval”
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Random walk revisited

~xt = [pt(d1), . . . , pt(dN)] – vector of probabilities at time t
of a random walk

~xt+1 = ~xtP = x0P
t+1
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Ergodic Markov chains

A Markov chain is ergodic iff it is irreducible and aperiodic

Irreducibility. Roughly: there is a path from any page to any
other page
Aperiodicity. Roughly: the pages cannot be partitioned such
that the random walker visits the partitions sequentially

Theorem. For any ergodic Markov chain, there is a unique
long-term visit rate for each state

A random walk with teleportation is an ergodic Markov chain
=⇒ there is a unique PageRank value for each page
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PageRank revisited

~π = [PR(d1), . . . ,PR(dN)] – vector of stationary probabilities

1~π = ~πP

λ = 1 – the largest eigenvalue

~π – principal eigenvector
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Computing PageRank using power iteration

For any initial distribution vector ~x

For large t

~xPt is very similar to ~xPt+1

~π ≈ ~xPt
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Example

Online edition (c)�2009 Cambridge UP

468 21 Link analysis

21.2.2 The PageRank computation

How do we compute PageRank values? Recall the definition of a left eigen-
vector from Equation 18.2; the left eigenvectors of the transition probability
matrix P are N-vectors π⃗ such that

π⃗ P = λπ⃗.(21.2)

The N entries in the principal eigenvector π⃗ are the steady-state proba-
bilities of the random walk with teleporting, and thus the PageRank values
for the corresponding web pages. We may interpret Equation (21.2) as fol-
lows: if π⃗ is the probability distribution of the surfer across the web pages,
he remains in the steady-state distribution π⃗. Given that π⃗ is the steady-state
distribution, we have that πP = 1π, so 1 is an eigenvalue of P. Thus if we
were to compute the principal left eigenvector of the matrix P — the one with
eigenvalue 1 — we would have computed the PageRank values.

There are many algorithms available for computing left eigenvectors; the
references at the end of Chapter 18 and the present chapter are a guide to
these. We give here a rather elementary method, sometimes known as power
iteration. If x⃗ is the initial distribution over the states, then the distribution at
time t is x⃗Pt. As t grows large, we would expect that the distribution x⃗Pt2

is very similar to the distribution x⃗Pt+1, since for large t we would expect
the Markov chain to attain its steady state. By Theorem 21.1 this is indepen-
dent of the initial distribution x⃗. The power iteration method simulates the
surfer’s walk: begin at a state and run the walk for a large number of steps
t, keeping track of the visit frequencies for each of the states. After a large
number of steps t, these frequencies “settle down” so that the variation in the
computed frequencies is below some predetermined threshold. We declare
these tabulated frequencies to be the PageRank values.

We consider the web graph in Exercise 21.6 with α = 0.5. The transition
probability matrix of the surfer’s walk with teleportation is then

P =

⎛
⎝

1/6 2/3 1/6
5/12 1/6 5/12
1/6 2/3 1/6

⎞
⎠ .(21.3)

Imagine that the surfer starts in state 1, corresponding to the initial proba-
bility distribution vector x⃗0 = (1 0 0). Then, after one step the distribution
is

x⃗0P =
(

1/6 2/3 1/6
)

= x⃗1.(21.4)

2. Note that Pt represents P raised to the tth power, not the transpose of P which is denoted PT.

Online edition (c)�2009 Cambridge UP

21.2 PageRank 469

x⃗0 1 0 0
x⃗1 1/6 2/3 1/6
x⃗2 1/3 1/3 1/3
x⃗3 1/4 1/2 1/4
x⃗4 7/24 5/12 7/24
. . . · · · · · · · · ·
x⃗ 5/18 4/9 5/18

! Figure 21.3 The sequence of probability vectors.

After two steps it is

x⃗1P =
(

1/6 2/3 1/6
)
⎛
⎝

1/6 2/3 1/6
5/12 1/6 5/12
1/6 2/3 1/6

⎞
⎠ =

(
1/3 1/3 1/3

)
= x⃗2.(21.5)

Continuing in this fashion gives a sequence of probability vectors as shown
in Figure 21.3.

Continuing for several steps, we see that the distribution converges to the
steady state of x⃗ = (5/18 4/9 5/18). In this simple example, we may
directly calculate this steady-state probability distribution by observing the
symmetry of the Markov chain: states 1 and 3 are symmetric, as evident from
the fact that the first and third rows of the transition probability matrix in
Equation (21.3) are identical. Postulating, then, that they both have the same
steady-state probability and denoting this probability by p, we know that the
steady-state distribution is of the form π⃗ = (p 1− 2p p). Now, using the
identity π⃗ = π⃗P, we solve a simple linear equation to obtain p = 5/18 and
consequently, π⃗ = (5/18 4/9 5/18).

The PageRank values of pages (and the implicit ordering amongst them)
are independent of any query a user might pose; PageRank is thus a query-
independent measure of the static quality of each web page (recall such static
quality measures from Section 7.1.4). On the other hand, the relative order-
ing of pages should, intuitively, depend on the query being served. For this
reason, search engines use static quality measures such as PageRank as just
one of many factors in scoring a web page on a query. Indeed, the relative
contribution of PageRank to the overall score may again be determined by
machine-learned scoring as in Section 15.4.1.

Manning et al., “Introduction to Information Retrieval”
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PageRank summary

PageRank is a query-independent indicator of the page quality

PageRank is a stationary state of a random walk with
teleportation

A random walk with teleportation is an ergodic Markov chain
=⇒ there is a unique PageRank value for each page

PageRank is a principal eigenvector of the transition matrix P
=⇒ it can be computed using any algorithm for finding
eigenvectors
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Intuition

Hub – a page with a good list of links to pages answering the
information need

Authority – a page with an answer to the information need

A good hub for a topic links to many authorities for that topic

A good authority for a topic is linked to by many hubs for
that topic
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Example Example for hubs and authorities

hubs authorities

www.bestfares.com

www.airlinesquality.com

blogs.usatoday.com/sky

aviationblog.dallasnews.com

www.aa.com

www.delta.com

www.united.com

56 / 80
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Computing hub and authority scores

Hub score

h(d)←
∑

y :d→y

a(y)

Authority score

a(d)←
∑

y :y→d

h(y)

Iterative update

For all d : h(d) =
∑

d !→y a(y)

d

y1

y2

y3

For all d : a(d) =
∑

y !→d h(y)

d

y1

y2

y3

Iterate these two steps until convergence

61 / 80
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Computing hub and authority scores

A – incidence matrix

Vectorized form of the hub and authority scores

~h← A~a

~a← AT~h

Can be rewritten as

~h← AAT~h

~a← ATA~a

~h and ~a are the eigenvectors of AAT and ATA respectively
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Hypertext-induced topic search (HITS)

1 Assemble the target query-dependent subset of web pages

2 Form the graph, induced by their hyperlinks

3 Compute AAT and ATA

4 Compute the principal eigenvectors of AAT and ATA

5 Form the vector of hub scores ~h and authority scores ~a

6 Output the top-scoring hubs and the top-scoring authorities
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Selecting pages for HITS

1 Do a regular web search

The obtained search results form the root set

2 Find pages that are linked from or link to pages in the root set

These pages form the base set

3 Compute hubs and authorities for the base set
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HITS summary

HITS is a query- and link-dependent indicator of the page
quality

Can be computed using any algorithm for finding eigenvectors

Usually, too expensive to be applied at a query time

In practice, usually a good hub is also a good authority

Therefore, the actual difference between PageRank ranking
and HITS ranking is not large
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Link-based retrieval summary

PageRank

Query-independent
Can be precomputed

HITS

Query-dependent
Cannot be precomputed
In practice, could be similar to PageRank
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Materials

Manning et al., Chapters 21.2–21.3

Croft et al., Chapter 4.5
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Ranking methods

1 Content-based

Term-based
Semantic

2 Link-based (web search)

3 Learning to rank
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