Information Retrieval

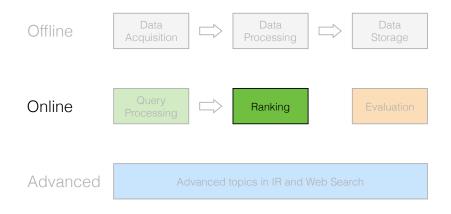
Link-based Retrieval

Ilya Markov i.markov@uva.nl

University of Amsterdam

Ilya Markov

Ranking methods



Ranking methods

- Content-based
 - Term-based
 - Semantic
- **2** Link-based (web search)
- 3 Learning to rank

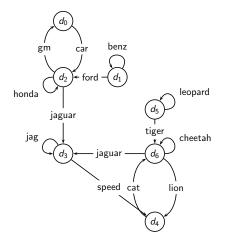
Linear algebra

- C square $M \times M$ matrix
- $\vec{x} M$ -dimensional vector
- $C\vec{x} = \lambda\vec{x}$
 - λ eigenvalue
 - \vec{x} right eigenvector
- $\vec{y}^T C = \lambda \vec{y}^T$
 - \vec{y} left eigenvector
- Principal eigenvector eigenvector corresponding to the largest eigenvalue
- There are many efficient algorithms to compute eigenvalues and eigenvectors

2 HITS

2 HITS

Web graph

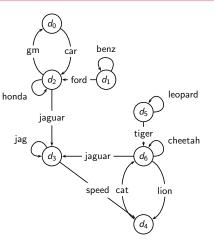


Ilya Markov

Random walk

- Start at a random page
- 2 Follow one of the outgoing links from this page
- 3 Repeat step 2

$$p(d_i) = \sum_{j:d_j \rightarrow d_i} \frac{p(d_j)}{|k:d_j \rightarrow d_k|}$$

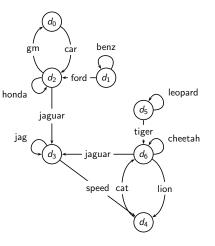


Manning et al., "Introduction to Information Retrieval"

Teleportation

- The surfer always teleports from a dead end to a random page
- At each step of a random walk the surfer teleports to a random page with probability α

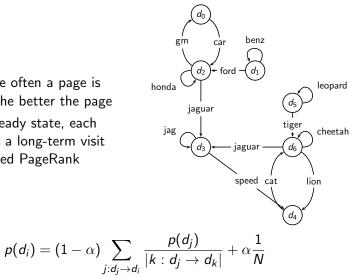
$$p(d_i) = \alpha \frac{1}{N}$$



Manning et al., "Introduction to Information Retrieval"

PageRank

- The more often a page is visited, the better the page
- In the steady state, each page has a long-term visit rate, called PageRank



Markov chains

- N states
- P transition probability matrix with dimensions N imes N
- P_{ij} transition probability from i to j

•
$$\sum_{j=1}^{N} P_{ij} = 1$$
 for all i

• At each step, we are in exactly one state

Link matrix

	d_0	d_1	<i>d</i> ₂	d ₃	d_4	d_5	d_6
d_0	0	0		0	0	0	0
d_1	0	1	1	0	0	0	0
d_2	1	0	1	1	0	0	0
d ₃	0	0	0	1	1	0	0
d_4	0	0	0	0	0	0	1
d_5	0	0	0	0	0	1	1
d_6	0	0	0	1	1	0	1

Manning et al., "Introduction to Information Retrieval"

Transition probability matrix P

	d_0	d_1	<i>d</i> ₂	d ₃	d_4	d_5	d_6
d_0	0.00	0.00	1.00 0.50 0.33	0.00	0.00	0.00	0.00
d_1	0.00	0.50	0.50	0.00	0.00	0.00	0.00
d_2	0.33	0.00	0.33	0.33	0.00	0.00	0.00
da	0.00	0.00	0.00	0.50	0.50	0.00	0.00
d_4	0.00	0.00	0.00	0.00	0.00	0.00	1.00
d_5	0.00	0.00	0.00	0.00	0.00	0.50	0.50
d_6	0.00	0.00	0.00 0.00 0.00	0.33	0.33	0.00	0.33

Manning et al., "Introduction to Information Retrieval"

Random walk revisited

• $\vec{x}_t = [p_t(d_1), \dots, p_t(d_N)]$ – vector of probabilities at time t of a random walk

•
$$\vec{x}_{t+1} = \vec{x}_t P = x_0 P^{t+1}$$

Ergodic Markov chains

- A Markov chain is ergodic iff it is irreducible and aperiodic
 - Irreducibility. Roughly: there is a path from any page to any other page
 - **Aperiodicity.** Roughly: the pages cannot be partitioned such that the random walker visits the partitions sequentially
- **Theorem.** For any ergodic Markov chain, there is a unique long-term visit rate for each state
- A random walk with teleportation is an ergodic Markov chain
 ⇒ there is a unique PageRank value for each page

PageRank revisited

- $\vec{\pi} = [PR(d_1), \dots, PR(d_N)]$ vector of stationary probabilities
- $1\vec{\pi} = \vec{\pi}P$
- $\lambda = 1$ the largest eigenvalue
- $\vec{\pi}$ principal eigenvector

Computing PageRank using power iteration

- For any initial distribution vector \vec{x}
- For large t
- $\vec{x}P^t$ is very similar to $\vec{x}P^{t+1}$
- $\vec{\pi} \approx \vec{x} P^t$

$$P = \left(\begin{array}{rrrr} 1/6 & 2/3 & 1/6 \\ 5/12 & 1/6 & 5/12 \\ 1/6 & 2/3 & 1/6 \end{array}\right)$$

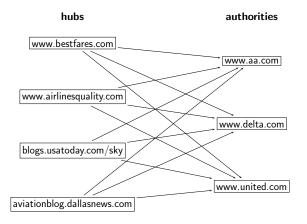
$\vec{x_0}$	1	0	0
$\vec{x_1}$	1/6	2/3	1/6
$\vec{x_2}$	1/3	1/3	1/3
$\vec{x_3}$	1/4	1/2	1/4
$\vec{x_4}$	7/24	5/12	7/24
\vec{x}	5/18	4/9	5/18

Manning et al., "Introduction to Information Retrieval"

PageRank summary

- PageRank is a query-independent indicator of the page quality
- PageRank is a stationary state of a random walk with teleportation
- A random walk with teleportation is an ergodic Markov chain
 ⇒ there is a unique PageRank value for each page
- PageRank is a principal eigenvector of the transition matrix P ⇒ it can be computed using any algorithm for finding eigenvectors

- Hub a page with a good list of links to pages answering the information need
- Authority a page with an answer to the information need
- A good hub for a topic links to many authorities for that topic
- A good authority for a topic *is linked to* by many hubs for that topic



Manning et al., "Introduction to Information Retrieval"

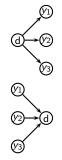
Computing hub and authority scores

Hub score

$$h(d) \leftarrow \sum_{y:d \to y} a(y)$$

Authority score

$$a(d) \leftarrow \sum_{y: y \to d} h(y)$$



Manning et al., "Introduction to Information Retrieval"

Computing hub and authority scores

- A incidence matrix
- Vectorized form of the hub and authority scores

$$ec{h} \leftarrow A ec{a} \ ec{a} \ ec{a} \leftarrow A^T ec{h}$$

• Can be rewritten as

$$\vec{h} \leftarrow AA^T \vec{h}$$

 $\vec{a} \leftarrow A^T A \vec{a}$

• \vec{h} and \vec{a} are the eigenvectors of AA^T and A^TA respectively

Hypertext-induced topic search (HITS)

- Assemble the target query-dependent subset of web pages
- 2 Form the graph, induced by their hyperlinks
- 3 Compute AA^T and A^TA
- **④** Compute the principal eigenvectors of AA^T and A^TA
- **(5)** Form the vector of hub scores \vec{h} and authority scores \vec{a}
- Output the top-scoring hubs and the top-scoring authorities

Selecting pages for HITS

- Do a regular web search
 - The obtained search results form the root set
- 2 Find pages that are linked from or link to pages in the root set
 - These pages form the base set
- ③ Compute hubs and authorities for the base set

HITS summary

- HITS is a query- and link-dependent indicator of the page quality
- Can be computed using any algorithm for finding eigenvectors
- Usually, too expensive to be applied at a query time
- In practice, usually a good hub is also a good authority
- Therefore, the actual difference between PageRank ranking and HITS ranking is not large

Outline

2 HITS

Link-based retrieval summary

- PageRank
 - Query-independent
 - Can be precomputed
- HITS
 - Query-dependent
 - Cannot be precomputed
 - In practice, could be similar to PageRank

- Manning et al., Chapters 21.2-21.3
- Croft et al., Chapter 4.5

Ranking methods

Content-based

- Term-based
- Semantic
- 2 Link-based (web search)
- **3** Learning to rank