- **DL 5.1.** Выразите предикаты в арифметике:
 - a) x = 3;
 - b) y делится на 4.
- **DL 5.2.** Рассмотрим естественную интерпретацию сигнатуры (=,<) на множестве целых чисел. Как выразить предикат y=x+1?
- **DL 5.3.** Рассмотрим естественную интерпретацию сигнатуры $(=, +, y = x^2)$ на множестве вещественных чисел. Как выразить предикат xy = z?
- **DL 5.4.** Рассмотрим множество целых положительных чисел как интерпретацию сигнатуры, содержащей предикат равенства и предикат «x делит y».
 - а) Как выразить предикат x = 1?
 - b) Как выразить предикат x простое число?
 - с) Если добавить к этой сигнатуре константу 2, то как выразить предикат $\exists n \ x = 2^n$?
- **DL 5.5.** Рассмотрим плоскость как интерпретацию сигнатуры, содержащей предикат равенства (совпадения точек) и двуместный предикат «находиться на расстоянии 1». Выразите предикаты:
 - а) «находиться на расстоянии не более 2»?
 - b) «находиться на расстоянии 2»;
- **DL 5.6.** Пусть сигнатура содержит предикат равенства и трёхместный предикат S. Интерпретация: носитель точки на плоскости, S(X,Y,Z) означает, что |XZ| = |YZ|. Выразите предикат: A,B,C лежат на одной прямой.
- $oxed{ extbf{DL 4.2.}}$ Пусть $f(x_1, x_2, \dots, x_{2n}) = x_1 x_2 \oplus x_2 x_3 \oplus \dots \oplus x_{2n-1} x_{2n}$. Докажите, что:
 - b) размер любого дерева решений для f не меньше 2^n .
- **DL 4.3.** Докажите, что если булева функция вычисляется с помощью ветвящейся программы размера S, то она вычисляется и с помощью булевой схемы размера O(S).
- **DL 4.4.** Покажите, что если булева функция вычисляется с помощью схемы полиномиального от числа входов размера и глубиной $O(\log(n))$, то она вычисляется и формулой полиномиального от числа переменных размера.
- **DL 4.5.** (Топологическая сортировка) Докажите, что в ориентированном графе G(V,E) без циклов все вершины можно пронумеровать числами от 1 до |V| таким образом, чтобы рёбра шли из вершин с меньшими номерами в вершины с большими номерами.
- **DL 4.6.** Правило *ослабления* позволяет вывести из дизъюнкта A дизъюнкт $A \lor B$ для любого дизъюнкта B. Покажите, что если из дизъюнктов D_1, D_2, \ldots, D_n семантически следует дизъюнкт C (это значит, что любой набор значений переменных, который выполняет все дизъюнкты D_i , выполняет также и C), то C можно вывести из D_i с помощью применений правил резолюции и ослабления.
- **DL 3.3.** Как модифицировать рассказанный на лекции алгоритм, проверяющий выполнимость формулы в 2-КНФ, чтобы он за полиномиальное от числа переменных время также выдавал набор значений переменных, который выполняет формулу?

Определение 3.1. Булева функция называется самодвойственной, если выполняется равенство $f(1-x_1,1-x_2,\ldots,1-x_n)=1-f(x_1,\ldots,x_n)$. Булева функция называется линейной, если она имеет вид $f(x)=a_0+a_1x_1+a_2x_2+\cdots+a_nx_n \bmod 2$, где $a_i\in\{0,1\}$.

DL 3.5. (Теорема Поста) Пусть есть набор булевых функций, среди которых есть немонотоная, не сохраняющая ноль (т. е., f(0, ..., 0) = 1), не сохраняющая единицу (т. е., g(1, ..., 1) = 0), нелинейная, несамодвойственная. Докажите, что:

- b) с помощью композиций этих функций можно получить любую булеву функцию;
- с) если набор булевых функций не удовлетворяет условию теоремы Поста, то через композицию этих функций нельзя выразить все булевы функции.

DL 2.2. Булева функция $f: \{0,1\}^n \to \{0,1\}$ называется монотонной, если при $x \leqslant y$ выполняется $f(x) \leqslant f(y)$ ($x \leqslant y$, если для всех $1 \leqslant i \leqslant n$ выполняется $x_i \leqslant y_i$). Докажите, что:

b) монотонную булеву функцию можно записать в виде формулы, которая использует только связки \vee и \wedge .

DL 2.7. Две формулы, содержащие только переменные и связки \lor , \land и \neg , эквивалентны. Докажите, что они останутся эквивалентными, если всюду \lor заменить на \land и наоборот.