Функциональное программирование Лекция 13. Алгоритм вывода типов

Денис Николаевич Москвин

СП6АУ РАН

05.12.2017

План лекции

- 1 Главный тип
- 2 Подстановка типа и унификация
- Теорема Хиндли-Милнера
- 4 let-полиморфизм и типы высших рангов
- б К практике

План лекции

- 1 Главный тип
- Подстановка типа и унификация
- Теорема Хиндли-Милнера
- 4 let-полиморфизм и типы высших рангов
- 5 К практике

Система λ — а ля Карри

Предтермы	Редукция
Λ ::= V	
M N	$(\lambda x. M) N \rightarrow_{\beta} M[x := N]$
λx. M	·
Типы	Типизация
PIIN 37 X	$x : \sigma \in \Gamma$
$\mathbb{T} := \mathbb{V}$	$\Gamma \vdash x : \sigma$
$ \sigma \rightarrow \tau$	
	$\underline{\Gamma \vdash M : \sigma \rightarrow \tau \Gamma \vdash N : \sigma}$
Контексты	$\Gamma \vdash (M N) : \tau$
$\Gamma ::= \emptyset$ $\mid \Gamma, \chi : \sigma$	$\frac{\Gamma, x : \sigma \vdash M : \tau}{\Gamma \vdash (\lambda x. M) : \sigma \rightarrow \tau}$
1 1, 7.0	

Здесь
$$V=\{\alpha,b,\ldots\},\ \mathbb{V}=\{\alpha,\beta,\ldots\}$$
 и $x\in V;\ M,N\in\Lambda;\ \sigma,\tau\in\mathbb{T}.$

 $x \in V$; $M, N \in \Lambda_{\mathbb{T}}$; $\sigma, \tau \in \mathbb{T}$.

Главный тип (principle type)

- Для систем Карри и Черча верна лемма подстановки типа: $\Gamma \vdash M : \sigma \ \Rightarrow \ [\alpha := \tau]\Gamma \vdash [\alpha := \tau]M : [\alpha := \tau]\sigma.$

$$\lambda f^{\sigma \to \tau \to \rho} g^{\sigma \to \tau} z^{\sigma}. f z (g z) : (\sigma \to \tau \to \rho) \to (\sigma \to \tau) \to \sigma \to \rho$$

$$\lambda f^{\sigma \to \tau \to \sigma} g^{\sigma \to \tau} z^{\sigma}. f z (g z) : (\sigma \to \tau \to \sigma) \to (\sigma \to \tau) \to \sigma \to \sigma$$

$$\lambda f^{(\tau \to \rho) \to \tau \to \rho} g^{(\tau \to \rho) \to \tau} z^{\tau \to \rho} :$$

$$((\tau \to \rho) \to \tau \to \rho) \to ((\tau \to \rho) \to \tau) \to (\tau \to \rho) \to \rho$$

- Любой из этих типов можно приписать терму $S \equiv \lambda f \, q \, z \, . \, f \, z \, (q \, z)$ в версии Карри.
- Однако, первый «лучше» в том смысле, что остальные получаются из него подстановкой типа вместо типовой переменной. Он называется главным (principle).

Вывод главного типа (пример)

$$\lambda x y. y (\lambda z. y x)$$
 $\lambda x^{\alpha} y^{\beta}. \underbrace{y^{\beta} (\lambda z^{\gamma}. y^{\beta} x^{\alpha})}_{\epsilon}$

- Присвоим типовую (мета-)переменную всем термовым переменным: $\chi^{\alpha}, y^{\beta}, z^{\gamma}$.
- **②** Присвоим типовую (мета-)переменную всем аппликативным подтермам: $(y x): \delta, y (\lambda z. y x): \epsilon$.
- **3** Выпишем уравнения (ограничения) на типы, необходимые для типизируемости терма: $\beta \sim \alpha \rightarrow \delta, \quad \beta \sim (\gamma \rightarrow \delta) \rightarrow \epsilon.$
- Найдём *главный унификатор* для типовых переменных (подстановку), дающий решения уравнений: $\alpha := \gamma \rightarrow \delta, \quad \beta := (\gamma \rightarrow \delta) \rightarrow \varepsilon, \quad \delta := \varepsilon.$
- **⑤** Главный тип λx у. у $(\lambda z$. у x): $(\gamma → ε) → ((\gamma → ε) → ε) → ε$.

План лекции

- 1 Главный тип
- 2 Подстановка типа и унификация
- Теорема Хиндли-Милнера
- 4 let-полиморфизм и типы высших рангов
- 5 К практике

Подстановка типа

Определение

Подстановка типа — это операция $S\!:\!\mathbb{T} o \mathbb{T}$, такая что

$$S(\sigma \rightarrow \tau) \equiv S(\sigma) \rightarrow S(\tau)$$

- Обычно подстановка тождественна на всех типовых переменных, кроме конечного носителя $\sup(S) = \{\alpha \mid S(\alpha) \not\equiv \alpha\}.$
- ullet Пример подстановки $S = [lpha := \gamma {\,
 ightarrow\,} eta, eta := lpha {\,
 ightarrow\,} \gamma].$
- Тождественную подстановку (с пустым носителем) обозначают [].
- ullet Подстановка выполняется *параллельно*; для $au = lpha {
 ightarrow} eta {
 ightarrow} \gamma$

$$S(\tau) = [\alpha := \gamma \to \beta, \beta := \alpha \to \gamma](\alpha \to \beta \to \gamma)$$
$$= (\gamma \to \beta) \to (\alpha \to \gamma) \to \gamma$$

Композиция подстановок

Определение

Композиция двух подстановок — подстановка с носителем, являющимся объединением носителей, над которым последовательно выполнены обе подстановки.

Для

$$S = [\alpha := \gamma \rightarrow \beta, \beta := \alpha \rightarrow \gamma];$$

$$T = [\alpha := \beta \rightarrow \gamma, \gamma := \beta]$$

$$\mathsf{T} \circ \mathsf{S} = [\alpha := \mathsf{T}(\mathsf{S}(\alpha)), \beta := \mathsf{T}(\mathsf{S}(\beta)), \gamma := \mathsf{T}(\mathsf{S}(\gamma))],$$
 то есть $\mathsf{T} \circ \mathsf{S} = [\alpha := \beta \mathop{
ightarrow} \beta, \beta := (\beta \mathop{
ightarrow} \gamma) \mathop{
ightarrow} \beta, \gamma := \beta]$

Подстановки образуют моноид относительно \circ с единицей []. (проверьте этот факт самостоятельно)

Унификатор

Определение

Унификатор для типов σ и τ — это подстановка S, такая что $S(\sigma) \equiv S(\tau)$.

Пример

Пусть $\sigma = \alpha \rightarrow \beta \rightarrow \gamma$ и $\tau = (\delta \rightarrow \epsilon) \rightarrow \zeta$. Их унификатор

$$S = [\alpha := \delta \rightarrow \varepsilon, \zeta := \beta \rightarrow \gamma]$$

Действительно, в результате этой подстановки получаем и из τ и из σ один и тот же тип

$$S(\sigma) \equiv S(\tau) \equiv (\delta \rightarrow \varepsilon) \rightarrow \beta \rightarrow \gamma$$

Поиск унификатора

Попробуем унифицировать типы

$$\sigma = \alpha \rightarrow \beta \rightarrow \alpha
\tau = \gamma \rightarrow \delta$$

Для построения унификатора нужно соединить подстановки $[\alpha := \gamma]$ и $[\delta := \beta \to \alpha]$.

$$\begin{array}{lcl} S' & = & [\alpha := \gamma] \circ [\delta := \beta \to \alpha] & = & [\alpha := \gamma, \delta := \beta \to \gamma] \\ S'' & = & [\delta := \beta \to \alpha] \circ [\alpha := \gamma] & = & [\delta := \beta \to \alpha, \alpha := \gamma] \end{array}$$

Одна из подстановок — унификатор, другая — нет:

Мораль: выделив одну из элементарных подстановок, следует тут же выполнить ее повсюду.

Главный унификатор

Определение

Унификатор S — это *главный унификатор* для σ и τ , если для любого другого унификатора S' существует подстановка T, такая что

$$S' \equiv T \circ S$$

Пример

Для $\sigma = \alpha \rightarrow \beta \rightarrow \alpha$ и $\tau = \gamma \rightarrow \delta$ главный унификатор

$$S = [\alpha := \gamma, \delta := \beta \rightarrow \gamma]$$

$$S' = [\alpha := \gamma, \beta := \epsilon \mathop{\rightarrow} \epsilon, \delta := (\epsilon \mathop{\rightarrow} \epsilon) \mathop{\rightarrow} \gamma]$$

$$S' = [\beta := \epsilon \rightarrow \epsilon] \circ S$$

Теорема унификации

Теорема унификации (Робинсон, 1965)

Существует алгоритм унификации U, который для заданных типов σ и τ возвращает:

- главный унификатор S для σ и τ , если σ и τ могут быть унифицированы;
- сообщение об ошибке в противном случае.
- Алгоритм $U(\sigma, \tau)$ позволяет искать «минимальное» решение уравнения на типы $\sigma \sim \tau$.
- Ключевой момент всех рассуждений про унификацию:

$$\sigma_1 \rightarrow \sigma_2 \equiv \tau_1 \rightarrow \tau_2 \; \Leftrightarrow \; \sigma_1 \equiv \tau_1 \; \wedge \; \sigma_2 \equiv \tau_2$$

Вывод типов: алгоритм унификации U

Алгоритм унификации Ц

```
\begin{array}{lll} \textbf{U}(\alpha,\alpha) & = & [] \\ \textbf{U}(\alpha,\tau) \mid \alpha \in \mathsf{FV}(\tau) & = & \mathsf{ошибка} \\ \textbf{U}(\alpha,\tau) \mid \alpha \not\in \mathsf{FV}(\tau) & = & [\alpha := \tau] \\ \textbf{U}(\sigma_1 \to \sigma_2,\alpha) & = & \textbf{U}(\alpha,\sigma_1 \to \sigma_2) \\ \textbf{U}(\sigma_1 \to \sigma_2,\tau_1 \to \tau_2) & = & \textbf{U}(\textbf{U}_2\sigma_1,\textbf{U}_2\tau_1) \circ \textbf{U}_2 \\ & & \mathsf{where} \ \textbf{U}_2 = \textbf{U}(\sigma_2,\tau_2) \end{array}
```

- $U(\sigma, \tau)$ завершается. Деревья типа конечны и количество типовых переменных сокращается на 1 через конечное число шагов.
- $U(\sigma, \tau)$ унифицирует. По индукции; используем, что если S унифицирует (σ, τ) , то $S \circ [\alpha := \rho]$ унифицирует $(\sigma \to \alpha, \tau \to \rho)$.
- $U(\sigma,\tau)$ даёт главный унификатор. По индукции; см. TAPL (глава 22.4) [Pie02] или LCwT (глава 4.4) [Bar92].

Алгоритм унификации U: пример

```
U(\alpha, \alpha)
  U(\alpha, \tau) \mid \alpha \in FV(\tau) = ошибка
  U(\alpha, \tau) \mid \alpha \notin FV(\tau) = [\alpha := \tau]
  U(\sigma_1 \rightarrow \sigma_2, \alpha) = U(\alpha, \sigma_1 \rightarrow \sigma_2)
  U(\sigma_1 \rightarrow \sigma_2, \tau_1 \rightarrow \tau_2) = U(U(\sigma_2, \tau_2)\sigma_1, U(\sigma_2, \tau_2)\tau_1) \circ U(\sigma_2, \tau_2)
Для \lambda x y . y (\lambda z . y x) система уравнений на типы имела вид
E = \{\beta \sim (\gamma \rightarrow \delta) \rightarrow \varepsilon, \beta \sim \alpha \rightarrow \delta\}. Алгоритм U даёт:
U(E) = U(\beta \rightarrow \beta, ((\gamma \rightarrow \delta) \rightarrow \epsilon) \rightarrow (\alpha \rightarrow \delta))
                 = U(U(\beta, \alpha \rightarrow \delta)\beta, U(\beta, \alpha \rightarrow \delta)(\gamma \rightarrow \delta) \rightarrow \varepsilon) \circ U(\beta, \alpha \rightarrow \delta)
                 = U(\alpha \rightarrow \delta, (\gamma \rightarrow \delta) \rightarrow \varepsilon) \circ [\beta := \alpha \rightarrow \delta]
                 = [\alpha := \gamma \rightarrow \varepsilon] \circ [\delta := \varepsilon] \circ [\beta := \alpha \rightarrow \delta]
                 = [\alpha := \gamma \rightarrow \varepsilon, \delta := \varepsilon, \beta := (\gamma \rightarrow \varepsilon) \rightarrow \varepsilon]
```

Домашнее задание

• Проследите за изменениями в работе алгоритма U, при перестановке элементов в E:

$$E = \{\beta \sim \alpha \! \to \! \delta, \beta \sim (\gamma \! \to \! \delta) \! \to \! \epsilon\}$$

• Изменится ли что-то в этом случае, и, если изменится, то что?

План лекции

- Поражений тип
- 2 Подстановка типа и унификация
- Теорема Хиндли-Милнера
- 4 let-полиморфизм и типы высших рангов
- 5 К практике

Теорема о существовании системы ограничений

- Наша первая цель построить систему ограничений на типы для терма M (возможно незамкнутого).
- Для типизации таких термов необходим контекст Γ, в котором объявляются типы всех свободных переменных.
- Для подстановки S, унифицирующей систему уравнениий на типы $E = \{\sigma_1 \sim \tau_1, \dots, \sigma_n \sim \tau_n\}$, введём обозначение $S \vDash E$.

Теорема о существовании системы ограничений

Для любых терма $M\in\Lambda$, контекста $\Gamma\left(FV(M)\subseteq\operatorname{dom}(\Gamma)\right)$ и типа $\sigma\in\mathbb{T}$ существует конечное множество уравнений на типы $E=E(\Gamma,M,\sigma)$, такое что для некоторой подстановки S:

- $S \models E(\Gamma, M, \sigma) \Rightarrow S(\Gamma) \vdash M:S(\sigma);$
- $S(\Gamma) \vdash M : S(\sigma) \Rightarrow S' \vdash E(\Gamma, M, \sigma)$, для некоторой S', имеющего тот же эффект, что и S, на типовых переменных в Γ и σ .

Алгоритм построения системы ограничений

Алгоритм построения системы ограничений Е

$$\begin{array}{lll} E(\Gamma,x,\sigma) & = & \{\sigma \sim \Gamma(x)\} \\ E(\Gamma,M\,N,\sigma) & = & E(\Gamma,M,\alpha \to \sigma) \cup E(\Gamma,N,\alpha) \\ E(\Gamma,\lambda x.\,M,\sigma) & = & E(\Gamma \cup \{x:\alpha\},M,\beta) \cup \{\alpha \to \beta \sim \sigma\} \end{array}$$

- В первом равенстве контекст Г рассматривается как функция из множества переменных в множество типов.
- Переменные α во втором и третьем равенствах и β в третьем всякий раз должны быть «свежими»!
- Самостоятельно постройте системы ограничений для следующих троек (Γ, M, σ)

$$\begin{array}{lll} E(x:\gamma \rightarrow \delta, x, \alpha \rightarrow \beta \rightarrow \alpha) & = & ??? \\ E(x:\gamma \rightarrow \delta, x x, \alpha \rightarrow \beta \rightarrow \alpha) & = & ??? \\ E(x:\gamma \rightarrow \delta, \lambda x. x, \alpha \rightarrow \beta \rightarrow \alpha) & = & ??? \end{array}$$

Главная пара (Principle Pair)

Определение

Для $M \in \Lambda$ *главной парой* называют пару (Γ, σ) , такую что

- Γ ⊢ M:σ
- $\Gamma' \vdash M : \sigma' \Rightarrow \exists S \ [S(\Gamma) \subseteq \Gamma' \land S(\sigma) \equiv \sigma']$

Пример

Для $M = \lambda x. xy$ имеем

$$PP(M) = (y : \alpha, (\alpha \rightarrow \beta) \rightarrow \beta)$$

$$y: \alpha \vdash (\lambda x. xy): (\alpha \rightarrow \beta) \rightarrow \beta$$

Теорема Хиндли – Милнера

Теорема Хиндли – Милнера

Существует алгоритм РР, возвращающий для $M \in \Lambda$

- главную пару (Γ, σ) , если M имеет тип;
- сообщение об ошибке в противном случае.

Пусть
$$FV(M) = \{x_1, \dots, x_n\}, \ \Gamma_0 = \{x_1 : \alpha_1, \dots, x_n : \alpha_n\}$$
 и $\sigma_0 = \beta$.

Алгоритм РР

$$\begin{array}{lll} PP(M) \mid U(E(\Gamma_0,M,\sigma_0)) \equiv \text{ошибка} & = & \text{ошибка} \\ PP(M) \mid U(E(\Gamma_0,M,\sigma_0)) \equiv S & = & (S(\Gamma_0),S(\sigma_0)) \end{array}$$

Стартуем с произвольных переменных типа, приписанных свободным переменным типизируемого терма M и всему терму.

Главный тип (Principle Type)

Определение

Для $M \in \Lambda^0$ *главным типом* называют тип σ , такой что

- ⊢ M:σ
- $\vdash M: \sigma' \Rightarrow \exists S [S(\sigma) \equiv \sigma']$

Следствие теоремы Хиндли – Милнера

Существует алгоритм РТ, возвращающий для $M \in \Lambda^0$

- главный тип σ, если М имеет тип;
- сообщение об ошибке в противном случае.

План лекции

- Поравный тип
- 2 Подстановка типа и унификация
- Теорема Хиндли-Милнера
- 4 let-полиморфизм и типы высших рангов
- б К практике

Где НМ не справляется?

Есть одно тонкое место, в котором алгоритм НМ не работает:

```
GHCi>Prelude> :t \f -> (f 'z', f True)

Couldn't match expected type 'Char' with actual type 'Bool'

In the first argument of 'f', namely 'True'

In the expression: f True
```

Почему это плохо?

Где НМ не справляется?

Есть одно тонкое место, в котором алгоритм НМ не работает:

```
GHCi>Prelude> :t \f -> (f 'z', f True)
Couldn't match expected type 'Char' with actual type 'Bool'
In the first argument of 'f', namely 'True'
In the expression: f True
```

Почему это плохо? Потому что вместо f мы можем передать полиморфную функцию:

```
GHCi>(\f -> (f 'z', f True)) (\x -> x)
Couldn't match expected type 'Char' with actual type 'Bool'
In the first argument of 'f', namely 'True'
In the expression: f True
```

1et-полиморфизм

- Для (частичного) снятия этой проблемы нужен более точный контроль за местом применения функции.
- Это делают с помощью let, рассматривая его как примитив (для вывода типов), а не как синтаксический сахар для лямбды.

```
GHCi> (\f -> (f 'z', f True)) (\x -> x)
  Couldn't match expected type 'Char' with actual type 'Bool'
GHCi> let f = \x -> x in (f 'z', f True)
  ('z',True)
```

В этом случае тип функции f неявно трактуется как
 f :: forall a. a -> a и снятие квантора происходит в момент аппликации.

Типы второго ранга

• Однако let-полиморфизм не панацея.

```
GHCi> let f g = (g 'z', g True) in f id
  Couldn't match expected type 'Char' with actual type 'Bool'
  In the first argument of 'g', namely 'True'
  In the expression: g True
```

• В более богатой системе это возможно, нужно лишь включить расширение и явно указать тип, поскольку вывод типов для систем высших рангов (>2) неразрешим.

План лекции

- Поравный тип
- 2 Подстановка типа и унификация
- 3 Теорема Хиндли-Милнера
- 4 let-полиморфизм и типы высших рангов
- б К практике

Задание для практики (и на дом)

- Реализуйте алгоритм U на Haskell.
- Реализуйте алгоритм Е на Haskell.
- Реализуйте алгоритм РР на Haskell.

Определение лямбда-терма

• Лямбда-термы можно закодировать так

• Например, выражение (Lam "x" \$ Lam "y" \$ Var "x") :@ (Lam "z" \$ Var "z") кодирует терм $(\lambda x.\lambda y.x)(\lambda z.z)$.

Свободные переменные

Свободные переменные терма

```
freeVars :: Expr -> [Symb]
```

Попробуйте написать реализацию.

Свободные переменные

Свободные переменные терма

```
freeVars :: Expr -> [Symb]
```

Попробуйте написать реализацию.

Реализация

```
freeVars :: Expr -> [Symb]
freeVars (Var v) = [v]
freeVars (t1 :@ t2) = freeVars t1 'union' freeVars t2
freeVars (Lam v t) = freeVars t \\ [v]
```

Определение типа

• Типы можно закодировать так

```
infixr 3 :->
data Type
    = TVar Symb
    | Type :-> Type
    deriving (Eq, Show)
```

• Например, выражение

```
(TVar "a" :-> TVar "b") :-> TVar "c" кодирует тип (a \to b) \to c, а выражение TVar "a" :-> TVar "b" :-> TVar "c" кодирует тип a \to b \to c.
```


Контексты

• Контексты можно закодировать так

```
newtype Env = Env [(Symb, Type)]
deriving (Eq,Show)
```

 Полезными могут оказаться пустой контекст и функция расширения контекста

```
emptyEnv :: Env
emptyEnv = Env []

extendEnv :: Env -> Symb -> Type -> Env
extendEnv (Env env) s t = Env $ (s,t) : env
```

Литература

H.P. Barendregt.

Lambda calculi with types.

In *Handbook of Logic in Computer Science*, pages 117–309. Oxford University Press, 1992.

Benjamin C. Pierce.

Types and Programming Languages.

MIT Press, 2002.