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Chapter 2

Ordinary grammars

2.1 Definitions by rewriting, by deduction, by parse trees and by
equations

Definition of strings with well-nested brackets. Let a left bracket be denoted by a, and a
right bracket by b. A formal language over the alphabet Σ = {a, b}.

• ε is a well-nested string;

• if u is a well-nested string, then so is aub;

• if u and v are well-nested strings, then so is uv.

Equivalent reformulation: w is a well-nested string if and only if

• w = ε, or

• w = aub for some well-nested string u, or

• w = uv for some well-nested strings u and v.

Let S be an abstract symbol that denotes a well-nested string. In the notation of formal
grammars, the above definition is written as follows.

S → ε | aSb | SS

Here the vertical line separates alternative forms of S, and is therefore a logical disjunction. Such
a definition is called a formal grammar.

Definition 2.1. An ordinary formal grammar is a quadruple G = (Σ, N,R, S), in which:

• Σ is the alphabet of the language being defined, that is, a finite set of symbols, from which
the strings in the language are built;

• N is a finite set of category symbols representing the syntactic categories defined in the
grammar. Each of these symbols denotes a certain property that every string over Σ is
deemed to have or not to have. (also called syntactic types, nonterminal symbols, variables
or predicate symbols, depending on the outlook on grammars);

• R is a finite set of grammar rules, each reprenenting a possible structure of strings with the
property A ∈ N as a concatenation X1 . . . X` of zero or more symbols symbols X1, . . . , X` ∈
Σ ∪N , with ` > 0.

A→ X1 . . . X` (2.1)
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Ordinary grammars 3

• S ∈ N is a distinguished category symbol representing all well-formed sentences defined by
the grammar (the letter S stands for “sentence”, also occasionally referred as an “initial
symbol” or a “start symbol”).

A rule A → X1 . . . Xn states that if a string w is representable as a concatenation w1 . . . wn
of n substrings, where each i-th substring has the property Xi, then w has the property A.

If A→ α1, . . . , A→ αm are all rules for a symbol A ∈ N , these rules may be written as

A→ α1 | . . . | αm,

in which the vertical lines separating the alternatives are, in essense, disjunction operators.
This intuitive meaning of a grammar can be formalized in three ways. One definition employs

string rewriting: this definition, popularized by Chomsky [4], is the most well-known. Another
definition uses deduction on items of the form “w has the property A”, and one more definition
is by a solution of language equations.

Consider the above grammar for well-nested strings, written in formal notation. The language
of all well-nested strings is known as the Dyck language, after the German mathematician Walther
von Dyck.

Example 2.1. The Dyck language is generated by a grammar G = (Σ, N,R, S), where Σ =
{a, b}, N = {S} and R = {S → aSb, S → SS, S → ε}. A grammar such as this shall be written
as follows.

S → aSb | SS | ε

2.1.1 Definition by string rewriting

One approach to defining the meaning of a grammar is by rewriting the so-called sentential
forms, which are strings over a combined alphabet Σ∪N containing both symbols of the target
language and category symbols. A sentential form serves as a scheme of a sentence, in which
every occurrence of a category symbol A ∈ N stands for some string with the property A. At
each step of rewriting, some category symbol A is replaced by the right-hand side of some rule
for A, thus obtaining a more precise sentential form. The string rewriting begins by taking the
initial symbol S (that is, the least precise sentential form) and proceeds until only symbols of
the alphabet remain (that is, an actual sentence of the language is obtained).

Definition 2.1(R) (Chomsky [4]). Let G = (Σ, N,R, S) be a grammar. Define a relation =⇒
of one-step rewriting on (Σ ∪N)∗ as follows.

sAs′ =⇒ sαs′ (for all A→ α ∈ R and s, s′ ∈ (Σ ∪N)∗)

If there is a sequence of zero or more rewriting steps,

α0 =⇒ α1 =⇒ . . . =⇒ α`

then *** is abbreviated by the following notation: α0 =⇒∗ α`. Also there are symbols for one or
more rewriting steps (α0 =⇒+ α`, with ` > 0) for exactly ` steps (α0 =⇒` α`) and for at most `
steps (α0 =⇒6` α`)

The language generated by a string α ∈ (Σ∪N)∗ is the set of all strings over Σ obtained from
it in zero or more rewriting steps.

LG(α) = {w | w ∈ Σ∗, α =⇒∗ w}

The language generated by the grammar is the language generated by its initial symbol S.

L(G) = LG(S) = {w | w ∈ Σ∗, S =⇒ ∗w}
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If multiple grammars are being considered, then the symbol for a rewriting step is marked
with the name of the grammar ( G

=⇒).

Example 2.1(R). In the grammar for the Dyck language given in Example 2.1, the string
abaabb can be obtained by rewriting S as follows (the category symbol rewritten at each step is
underlined).

S =⇒ SS =⇒ aSbS =⇒ abS =⇒ abaSb =⇒ abaaSbb =⇒ abaabb

Hence, abaabb ∈ L(G).
The same string can be obtained by applying the same rules in a different order.

S =⇒ SS =⇒ SaSb =⇒ SaaSbb =⇒ aSbaaSbb =⇒ aSbaabb =⇒ abaabb

Both rewriting sequences represent the same parse of this string. The order of applying the rules
is irrelevant.

The definition by rewriting incurred some corresponding terminology. Category symbols are
called “nonterminal symbols”, because these symbols require further rewriting for the rewriting
sequence to terminate; accordingly, the symbols of the alphabet Σ are called “terminal symbols”.
Rules of a grammar are called “productions”. This terminology, which reflects the technical
aspects of the definition, but not the nature of the grammars, is generally avoided in this book,
but knowing it is essential for reading the original papers.

2.1.2 Definition by deduction

According to the second definition, the language generated by a grammar is defined by a for-
mal deduction system. This definition is important for making the logical nature of the grammars
explicit. It also very well corresponds to the deductions performed by parsing algorithms.

Definition 2.1(D) (implicit in Kowalski [15, Ch. 3]). For a grammar G = (Σ, N,R, S), consider
elementary propositions (items) of the form “a string w has a property X”, with w ∈ Σ∗ and
X ∈ Σ ∪N , denoted by X(w). The deduction system uses the following axioms, which say that
a one-symbol string a has the property a; that is, “a is a”.

` a(a) for all a ∈ Σ

Each rule A → X1 . . . X`, with ` > 0 and Xi ∈ Σ ∪ N , is regarded as the following schema for
deduction rules.

X1(u1), . . . , X`(u`) ` A(u1 . . . u`) for all u1, . . . , u` ∈ Σ∗

A derivation (or a proof) of a proposition A(u) is a sequence of such axioms and deductions,
where the set of premises at every step consists of earlier derived propositions.

I1 ` X1(u1)

...

Iz−1 ` Xz−1(uz−1)

Iz ` A(u)

(with Ij ⊆ {Xi(ui) | i ∈ {1, . . . , j − 1}}, for all j)

The existence of such a derivation is denoted by `G A(u).
Whenever an item X(w) can be deduced from the above axioms by the given deduction rules,

this is denoted by ` X(w). Define LG(X) = {w | ` X(w)} and L(G) = LG(S) = {w | ` S(w)}.
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Example 2.1(D). According to the grammar in Example 2.1, the membership of the string
abaabb in the Dyck language is logically deduced as follows.

` S(ε) (rule S → ε)
` a(a) (axiom)
` b(b) (axiom)

a(a), S(ε), b(b) ` S(ab) (rule S → aSb)
a(a), S(ab), b(b) ` S(aabb) (rule S → aSb)
S(ab), S(aabb) ` S(abaabb) (rule S → SS)

2.1.3 Definition by parse trees

A parse tree conveys the parse of a string according to a grammar. It can be obtained from
a tree corresponding to a deduction.

Definition 2.1(T). Let G = (Σ, N,R, S) be a grammar and consider trees of the following form.
Each node of the tree is labelled with a symbol from Σ ∪N , and its sons are linearly ordered. A
node labelled with a ∈ Σ must have no sons. For each node labelled with A ∈ N , let X1, . . . , X`

be the labels in its sons; then the grammar must contain a rule A → X1 . . . X`. The yield of a
tree is a string w ∈ Σ∗ formed by all nodes labelled with symbols in Σ, written according to the
linear order. If X is the label of the root, such a tree is called a parse tree of w from X.

Define LG(X) = {w | there is a parse tree of w from X} and L(G) = LG(S).

In each node labelled with A ∈ N , the rule used in this node can be determined from the
node’s sons. Nevertheless, it is often convenient to write the rule explicitly, as in the sample
parse tree given in Figure 2.1, in which every node labelled by any rule should have label S by
Definition 2.1(T).

S→SS

a b a ba b

S→aSb

S→aSb
S→aSb

S→εS→ε

Figure 2.1: A parse tree of the string abaabb according to the grammar in Example 2.1.

2.1.4 Towards a definition by language equations

Another equivalent definition of the language generated by a grammar is by a solution of a
system of equations with languages as unknowns.

Let the category symbols in a grammar G = (Σ, N,R, S) be numbered from 1 and n, with
N = {A1, A2, . . . , An}. Each category symbol Ai is interpreted as a variable that assumes the
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value of a formal language over Σ. The correct value of this variable should be the set of strings
with the property Ai. These values are defined by a system of language equations of the following
form, where the right-hand sides ϕi : (2Σ∗)n → 2Σ∗ are functions on languages.

A1 = ϕ1(A1, . . . , An)
...

An = ϕn(A1, . . . , An)

The right-hand side ϕi of each equation is constructed according to the rules of the grammar
for the symbol Ai: each rule for Ai is transcribed as a concatenation of variables and singleton
constant languages {a}, and the whole function ϕi is the union of all these concatenation.

Let Σ be an alphabet, let n > 1. Consider vectors on n languages of the form (L1, . . . , Ln);
the set of all such vectors is (2Σ∗)n. Define a partial order of componentwise inclusion (v)
on the set of these vectors as (K1, . . . ,Kn) v (L1, . . . , Ln) if and only if Ki ⊆ Li. The least
element is ⊥ = (∅, . . . ,∅), the greatest one is > = (Σ∗, . . . ,Σ∗). For any two such vectors, their
componentwise union is denoted by (K1, . . . ,Kn) t (L1, . . . , Ln) = (K1 ∪ L1, . . . ,Kn ∪ Ln).

Let ϕ = (ϕ1, . . . , ϕn) be a vector function representing the right-hand side of the system.
Assume that ϕ has the following two properties:

• ϕ is monotone, in the sense that for any two vectors K and L, the inequality K v L implies
ϕ(K) v ϕ(L).

• ϕ is t-continuous, in the sense that for every increasing sequence of vectors of languages
{L(i)}∞i=1 it holds that

∞⊔
i=1

ϕ(L(i)) = ϕ
( ∞⊔
i=1

L(i)
)
.

Lemma 2.1. A function on languages ϕ formed from variables and constant languages using
concatenation and union is monotone and continuous.

Proof. By induction on the structure of individual expressions. Variables and constants are
monotone, union/concatenation of monotone functions is monotone. Same with continuity.

Lemma 2.2 (attributed to Kleene). If ϕ is monotone and t-continuous, then the following
vector of languages is least solution of the system X = ϕ(X).

L =

∞⊔
k=0

ϕk(⊥)

Proof. The sequence {ϕk(⊥)}k>0 is monotone, because ⊥ v ϕ(⊥) by the definition of the least
element, and then ϕk−1(⊥) v ϕk(⊥) implies ϕk(⊥) v ϕk+1(⊥) by the monotonicity of ϕ. To see
that L is the solution of the system, consider that

ϕ(L) = ϕ
( ∞⊔
k=0

ϕk(⊥)
)

=
∞⊔
k=0

ϕ(ϕk(⊥)) =
∞⊔
k=0

ϕk+1(⊥)

because ϕ is t-continuous, and that
⊔∞
k=0 ϕ

k+1(⊥) =
⊔∞
k=0 ϕ

k(⊥) = L, because these two
sequences are in fact the same. This shows that ϕ(L) = L.

LetK be any vector with ϕ(K) = K and consider the sequences {ϕk(⊥)}∞k=0 and {ϕk(K)}∞k=0

Then each element of the former sequence is a subset of the corresponding element of the latter
sequence: ϕk(⊥) v ϕk(K), which can be proved inductively on k, using the monotonicity of ϕ.
This inequality is extended to the least upper bounds of the sequences as L =

⊔∞
k=0 ϕ

k(⊥) v⊔∞
k=0 ϕ

k(K) = K, which proves that L is the least among all solutions.
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2.1.5 Definition by equations

Definition 2.1(E) (Ginsburg and Rice [10]). Let G = (Σ, N,R, S) be an ordinary grammar.
The associated system of language equations is a system of equations in variables N , with each
variable representing an unknown language over Σ, which contains one equation of the form
A = ϕ for each variable A ∈ N . This equation is of the following form.

A =
⋃

A→X1...X`∈R
X1 · . . . ·X` (for all A ∈ N) (2.2)

Each Xi ∈ Σ in the equation represents a constant language {a}, and a rule A→ ε is represented
by a constant {ε}. Let (. . . , LA, . . .)A∈N be the least solution of this system. Then LG(A) is
defined as LA for each A ∈ N .

Example 2.1(E). The language equation corresponding to the grammar in Example 2.1 is

S = ({a} · S · {b}) ∪ (S · S) ∪ {ε}

and the Dyck language is its least solution (whereas the greatest solution is S = Σ∗).

As demonstrated by this example, the system of equations (2.2) corresponding to a grammar
need not have a unique solution. However, it always has some solutions, and among them
there is the least solution with respect to componentwise inclusion. This least solution can be
obtained as a limit of an ascending sequence of vectors of languages, with the first element
⊥ = (∅, . . . ,∅), and with every next element obtained by applying the right-hand sides of
(2.2) as a vector function ϕ :

(
2Σ∗
)n → (

2Σ∗
)n to the previous element. Since this function

is monotone with respect to the partial ordering v of componentwise inclusion, the resulting
sequence {ϕk(⊥)}k→∞ is ascending, and the continuity of ϕ implies that its limit (least upper
bound)

⊔
k>0 ϕ

k(⊥) is the least solution.

Example 2.2. For the system of equations in Example 2.1(E), the sequence {ϕk(⊥)}k>0 takes
the form

ϕ0(⊥) = ∅,
ϕ1(⊥) = {ε},
ϕ2(⊥) = {ε, ab},
ϕ3(⊥) = {ε, ab, aabb, abab},
ϕ4(⊥) = {ε, ab, aabb, abab, aaabbb, aababb, abaabb, ababab, aabbab, aabbaabb, aabbabab, ababaabb, abababab},

...

In particular, abaabb ∈ ϕ4(⊥), because ab, aabb ∈ ϕ3(⊥) and abaabb ∈ ϕ3(⊥) · ϕ3(⊥) ⊆ ϕ4(⊥).
(by the concatenation S · S in the right-hand side of the equation).

Introduces its own terminology: category symbols are called variables.

2.1.6 Equivalence of the four definitions

To see that a grammar generates the same language under each of Definitions 2.1(R), 2.1(D),
2.1(T), 2.1(E).

The proof is quite boring, and a reader who reads it until the end may exclaim that all these
definitions are the same and there is nothing to prove. If this happens, then the main goal of
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this section—that of building an understanding of the definition of ordinary grammars—will be
accomplished.

Notation: for a |N |-tuple L = (. . . , LB, . . .)B∈N , let [L]A := LA for each A ∈ N , and
[L]a := {a} for each a ∈ Σ.

Theorem 2.1. Let G = (Σ, N,R, S) be a grammar, as in Definition 2.1. For every X ∈ Σ ∪N
and w ∈ Σ∗, the following four statements are equivalent:

(R). X =⇒∗ w,

(D). ` X(w),

(T). there is a parse tree of w from X,

(E). w ∈
[⊔

k>0 ϕ
k(⊥)

]
X
.

Proof. (R) ⇒ (D) Induction on the number of steps in the rewriting of X to w.
Basis: X =⇒∗ w in zero steps. Then X = w = a ∈ Σ∗ and ` a(a) by an axiom.
Induction step. Let X =⇒k w with k > 1. Then X = A ∈ N and the rewriting begins by

applying a rule A → X1 . . . X`. Then, each Xi is rewritten to a string wi ∈ Σ∗ in less than k
steps, and w = w1 . . . w`. By the induction hypothesis, ` Xi(wi) for each i. Then the desired
item A(w) is deduced as

X1(w1), . . . , X`(w`) ` A(w) by the rule A→ X1 . . . X`.

(D) ⇒ (T) Induction on the number of applications of grammar rules in the deduction
` X(w).

Basis: no rules applied. Then X(w) must be an axiom, that is, X = w = a, and the requested
tree consists of a single node labelled with a.

Induction step. Let X(w) be deduced using one or more rules. Then X = A ∈ N . Consider
the last step of its deduction, which must be of the form

X1(w1), . . . , X`(w`) ` A(w), by some rule A→ X1 . . . X`,

where w1 . . . w` = w. Each of its premises, Xi(wi), can then be deduced using fewer rules, and
hence, by the induction hypothesis, there exists a parse tree with the root Xi and with the
yield wi. Construct a new tree by adding a new root labelled with A and by connecting it to
X1, . . . , X`. This is a valid parse tree with the yield w.

(T) ⇒ (E) Consider a parse tree with a root X ∈ Σ ∪ N and yield w ∈ Σ∗, and let m be
the number of nodes labelled with symbols in N . The proof is by induction on m.

Basis: no such nodes. Then the tree consists of a unique node labelled X = a, and its yield
is w = a. Thus the claim holds as a ∈ [⊥]a.

Induction step. If a tree contains at least one node labelled with a category symbol, then
its root is among such nodes, that is, X = A ∈ N . Let X1, . . . , X` be the labels of the sons of
this node. For each Xi, consider the subtree with Xi as a root, and let wi be the yield of that
subtree. Then w = w1 . . . w`.

By the induction hypothesis for each i-th subtree, wi ∈
[⊔

k>0 ϕ
k(⊥)

]
Xi
. Concatenating

these statements gives w1 . . . w` ∈
[⊔

k>0 ϕ
k(⊥)

]
X1
. . .
[⊔

k>0 ϕ
k(⊥)

]
X`

, and since
⊔
k>0 ϕ

k(⊥) is
a solution of the system of language equations corresponding to the grammar, this implies that
w ∈

[⊔
k>0 ϕ

k(⊥)
]
A
, as claimed.

(E) ⇒ (R) If w ∈
[⊔

k>0 ϕ
k(⊥)

]
X
, then there exists such a number k > 0, that w ∈

[ϕk(⊥)]X . The proof is by induction on the least such number k.
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Basis: w ∈ [ϕ0(⊥)]X = [⊥]X . Then w = X = a and a =⇒ a in zero steps.
Induction step. Let w ∈ [ϕk(⊥)]X with k > 1 and w /∈ [ϕk−1(⊥)]X . Then X = A ∈ N and

accordingly
w ∈ ϕA(ϕk−1(⊥)) =

⋃
A→X1...X`∈R

[ϕk−1(⊥)]X1 . . . [ϕ
k−1(⊥)]X`

.

This means that there exists such a rule A→ X1 . . . X` and such a partition w = w1 . . . w`, that
wi ∈ [ϕk−1(⊥)]Xi for each i. Then, by the induction hypothesis, Xi can be rewritten to wi.
Using these rewritings, A can be rewritten to w as follows:

A =⇒ X1 . . . X` =⇒∗ w1 . . . w` = w.

2.2 Examples

Example 2.3. The language { anbn | n > 0} is described by the following grammar.

S → aSb | ε

Example 2.4. The language { anb2n | n > 0} is described by the following grammar.

S → aSbb | ε

a ba b

S→aSb

S→aSb

S→ε
a ba b

S→aSbb

S→aSbb

S→ε
b b

Figure 2.2: (left) A parse tree of the string aabb according to the grammar in Example 2.3;
(right) A parse tree of aabbbb according to the grammar in Example 2.4.

Example 2.5. The language { ambn|m > 0, m 6 n 6 2m} is described by the following grammar.

S → aSb | aSbb | ε

Lemma 2.3. Every regular language is described by an ordinary formal grammar G =
(Σ, N,R, S), in which every rule is of the form A → aB, with a ∈ Σ and B ∈ N , or of the
form A→ ε.

Proof. by simulating a DFA.

Example 2.6. The language L = {w | w ∈ {a, b}∗, |w|a = |w|b} is described by the following
grammar.

S → SS | aSb | bSa | ε
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Proof. The claim that this grammar generates the given language requires an argument. All
strings generated by the grammar are in L. To see that every string belonging to the language is
generated by the grammar, let w ∈ L and consider the function f : {0, 1, . . . , |w|} → Z described
by f(|u|) = |u|a − |u|b for every partition w = uv. Then either it has an intermediate zero, thus
w is obtained by the rule S → SS, or it doesn’t, in which case either all its values are positive,
or all are negative. In the former case, it must begin with a and end with b, and therefore is
generated by the rule S → aSb.

Example 2.7. The language of palindromes {w | w ∈ {a, b}∗, w = wR} is described by the
following grammar.

S → aSa | bSb | a | b | ε

Example 2.8. The language { ambm+nan | m,n > 0} is described by the following grammar,
which treats a string ambm+nan as a concatenation (ambm)(bnan), and defines the two parts
separately, the first by A and the second by B.

S → AB

A→ aAb | ε
B → bBa | ε

S→AB

a b b ab a

B→bBa

B→bBa
A→aAb

B→εA→ε

Figure 2.3: A parse tree of the string abbbaa according to the grammar in Example 2.8.

Example 2.9. Let Σ = {a, b}. The language {ww | w ∈ {a, b}∗} is described by the following
grammar.

S → AB | BA | O
A→ XAX | a
B → XBX | b
X → a | b
O → XXO | X

(see Figure 2.4)
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S

B

ab b b b

BX X X X

B

A

a a b

AX X

a b

i j i j

i i j j

Figure 2.4: (left) How the grammar in Example 2.9 defines strings of the form uv with |u| = |v|
and u 6= v; (right) a parse tree of the string aabbabbb.

Example 2.10. The language { ak1b . . . ak`b | ` > 1, k1, . . . , k` > 0, ∃i : ki = `} is described by
the following grammar.

S → BC

A→ aA | b
B → ABa | ε
C → aCA | ab

(see Figure 2.5)

Exercises

2.2.1. Construct a grammar for {w | w ∈ {a, b}∗, |w|a < |w|b}.

2.2.2. Construct a grammar for {ww | w ∈ {a, b, c}∗}.

2.2.3. Construct a grammar for { ak1b . . . ak`b | ` > 1, ki > 0, ∃i : ki = i}.

2.3 Limitations

2.3.1 The pumping lemma

Lemma 2.4 (The pumping lemma: Bar-Hillel, Perles and Shamir [2]). For every ordinary
language L ⊆ Σ∗ there exists a constant p > 1, such that for every string w ∈ L with |w| > p
there exists a factorization w = xuyvz, where |uv| > 0 and |uyv| 6 p, such that xuiyviz ∈ L for
all i > 0.

Sketch of a proof. Let G = (Σ, N,R, S) be a grammar generating L. Let m = maxA→α∈R |α|
and define p = m|N | + 1.
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a b

A

A

a

A

a b

A

A

a a a a

B

B→ε

b a

C

C

b

A

A

B

S

Figure 2.5: A parse tree of the string w = aababaaaabab according to the grammar in Exam-
ple 2.10.

Consider any string w ∈ L of length at least p and consider its parse tree. Let an internal
node s in the tree be called non-trivial if the partitition of its subtree induced by its sons non-
trivially divides the leaves (that is, it is not the case that one of the sons has all the leaves and
the others have none).

Then the parse tree should contain a path with at least |N |+1 non-trivial nodes, some symbol
A ∈ N must repeat twice in this path and the section of the tree between these two instances of
A can be repeated 0 or more times, thus obtaining parse trees of xuiyviz. This section of the
tree represents a derivation of uAv from A.

Used to prove that a language is not described by any ordinary grammar, as follows. Assuming
that a language L is described by one, the pumping lemma provides a certain constant p, and then
claims something about every sufficiently long string in L. In order to obtain a contradiction,
it is sufficient to construct any single string w (depending on p), and then prove that for every
factorization w = xuyvz satisfying the conditions in the lemma, there is a string of the form
xuiyviz that does not belong to L.

Example 2.11. The language L = { anbncn | n > 0} is not described by any ordinary grammar.

Proof. Suppose it is, and let p > 1 be the constant given by the pumping lemma. Consider
w = apbpcp. Then there exists a factorization w = xuyvz. There are several cases:

• Either u or v is not in a∗ ∪ b∗ ∪ c∗, that is, the string spans over the boundary between as,
bs and cs. Then xu2yv2z /∈ a∗b∗c∗ and cannot be in L.

• If u, v ∈ a∗, then xyz = ap−|uv|bpcp /∈ L. The cases of u, v ∈ b∗ and u, v ∈ c∗ are similar.

• If u ∈ a∗ and v ∈ b∗, then xu0yv0z = ap−|u|bp−|v|cp, which is not in L because p− |u| 6= p
or p− |v| 6= p. The case of u ∈ b∗ and v ∈ c∗ is similar.

In each case a contradiction is obtained.
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Example 2.12 (Floyd [8], here “ported” from Algol 60 to C). Consider that the following string
is a valid C program if and only if i = j = k.

main() { int x . . . x︸ ︷︷ ︸
i>1

; x . . . x︸ ︷︷ ︸
j>1

= x . . . x︸ ︷︷ ︸
k>1

; }

Then there is no ordinary grammar for the set of well-formed programs in C.

2.3.2 Ogden’s lemma and its variants

Lemma 2.5 (Ogden’s lemma, Ogden [17]). For every ordinary language L ⊆ Σ∗ there exists a
constant p > 1, such that for every string w ∈ L with |w| > p and for every set P ⊆ {1, . . . , |w|}
of distinguished positions in w, with |P | > p, there exists a factorization w = xuyvz, where

• uv contains at least one distinguished position,

• uyv contains at most p distinguished positions,

such that xuiyviz ∈ L for all i > 0.

Proof. By the same argument, in which non-trivial nodes are defined by having a non-trivial
partition of distinguished leaves in a subtree.

The standard pumping lemma is Ogden’s lemma with every position distinguished.

Example 2.13. The language L = { ambncn |m,n > 0, m 6= n} is not described by any ordinary
grammar.

Proof. Suppose it is, and let p be the constant given by Ogden’s lemma. Consider the string
w = ap+p!bpcp with distinguished positions bp.

Example 2.14 (Bader and Moura [1]). The language { abp | p is prime} ∪ ab∗ satisfies Ogden’s
lemma, but is not described by any ordinary grammar.

Proof. TBW.

This example motivates an even stronger pumping lemma, which also features excluded
positions.

Lemma 2.6 (Bader and Moura [1]). For every ordinary language L ⊆ Σ∗ there exists a constant
p > 1, such that for every string w ∈ L and for every two sets P,Q ⊆ {1, . . . , |w|} of distinguished
and excluded positions in w, which satisfy |P | > p|Q|+1, there exists a factorization w = xuyvz,
where

• uv contains at least one distinguished position and no excluded positions;

• if d is the number of distinguished positions in uyv and e is the number of excluded positions
in uyv, then d 6 ne+1,

and xuiyviz ∈ L for all i > 0.
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2.4 Closure properties

Proposition 2.1. The ordinary languages are closed under union, concatenation and star.

Proof. If Gi = (Σ, Ni, Ri, Si) with i ∈ {1, 2} and N1 ∩N2 = ∅ are ordinary grammars, then the
grammars (Σ, N1 ∪ N2 ∪ {S}, R1 ∪ R2 ∪ {S → S1, S → S2}, S) and (Σ, N1 ∪ N2 ∪ {S}, R1 ∪
R2 ∪{S → S1S2}, S) generate L(G1)∪L(G2) and L(G1)L(G2), respectively, while the grammar
(Σ, N1 ∪ {S}, R1 ∪ {S → S1S, S → ε}, S) generates L(G1)∗.

The correctness of each construction can be immediately proved using language equations.

Theorem 2.2 (Scheinberg [20]). The ordinary languages are not closed under intersection and
complementation.

Proof. Consider the following two grammars, which generate the languages L1 = { aib`c`|i, ` > 0}
and L2 = { ambmcj | j,m > 0}, respectively.

S1 → aS1 | A
A → bAc | ε

S2 → S2c | B
B → aBb | ε

Suppose the ordinary languages are closed under intersection. Then the intersection

L1 ∩ L2 = { aib`c` | i, ` > 0} ∩ { ambmcj | j,m > 0} = { anbncn | n > 0}

should be ordinary as well, which contradicts Example 2.11.
Turning to the complementation, consider the following grammar generating the language

{ akb`cm | k 6= ` or ` 6= m}.
S → AD | EC
A → aA | ε
B → bB | ε
C → cC | ε
D → aDb | aA | bB
E → bEc | bB | cC

The following language is ordinary as well, as a union of two ordinary languages.

L = { akb`cm | k 6= ` or ` 6= m} ∪ a∗b∗ = { anbncn | n > 0}

Then, if the ordinary languages are closed under complementation, then the language L must be
ordinary as well, which is known to be untrue.

Though an intersection of two ordinary languages is not necessarily ordinary, it is ordinary
in case one of these languages is regular.

Theorem 2.3 (Bar-Hillel, Perles and Shamir [2]). For every ordinary language L and for every
regular language K, the language L ∩K is ordinary.

Proof. Let G = (Σ, N,R, S) be a grammar and let M = (Σ, Q, q0, δ, F ) be a DFA. Construct a
new grammar G′ = (Σ, N ′, R′, S′) with a set of nonterminals N ′ = {S′} ∪ {Aq,q′ |A ∈ N, q, q′ ∈
Q}. The idea is that LG′(Aq,q′) = LG(A) ∩ {w | δ(q, w) = q′}.

For every rule A → X1 . . . X` ∈ R, and for every sequence of intermediate states
p0, p1, . . . , p` ∈ Q, where p0 = q, p` = q′ and Xi = ai ∈ Σ implies δ(pi−1, ai) = pi, the new
grammar contains a rule

Aq,q′ → X ′1X
′
2 . . . X

′
`,

(
where X ′i =

{
Api−1,pi , if Xi = A ∈ N

a, if Xi = a ∈ Σ

)
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The rules for the new initial symbol are

S′ → Sq0,q (q ∈ F )

One more very simple closure result. Let Σ and Γ be alphabets. A mapping h : Σ∗ → Γ∗ is
called a homomorphism if h(uv) = h(u) · h(v) for all u, v ∈ Σ∗. This definition, in particular,
implies that h(ε) = ε, and that a homomorphism is completely defined by the images of all
symbols from Σ.

Theorem 2.4. Let Σ and Γ be alphabets, let h : Σ∗ → Γ∗ be a homomorphism and let G =
(Σ, N,R, S) be any ordinary grammar. Define h(A) = A for all A ∈ N . Then the grammar
G′ = (Γ, N,R′, S) with R′ = {A→ h(α) |A→ α ∈ R} generates the language h(L(G)).

Another operation is cyclic shift, defined as shift(L) = { vu | u, v ∈ Σ∗, uv ∈ L}. The
closure of ordinary languages under this operation was independently obtained by Oshiba [18],
by Maslov [16] and by Hopcroft and Ullman [14, solution to Ex. 6.4c].

Theorem 2.5 (Oshiba [18]; Maslov [16]; Hopcroft, Ullman [14, solution to Ex. 6.4c]). Let
G = (Σ, N,R, S) be any ordinary grammar and consider the grammar G′ = (Σ, N ∪Ñ ∪{S′}, R∪
R′, S′), with Ñ = { Ã | A ∈ N}, which contains all rules from the original grammar, and the
following additional rules in R′.

S′ → θÃη (A→ ηθ ∈ R)

B̃ → βÃα (A→ αBβ ∈ R)

S̃ → ε

Then LG′(A) = LG(A) and LG′(Ã) = { vu|u, v ∈ Σ∗, S
G

=⇒∗uAv} for all A ∈ N , and accordingly
L(G′) = shift(L(G)).

Sketch of a proof. Consider a parse tree of a string uv according to the original grammar G.
Define the main path leading to the boundary between u and v. The parse tree is turned inside
out in relation to the main path, as shown in Figure 2.6.

Theorem 2.6 (Ginsburg and Rose [11]). The ordinary languages are closed under inverse ho-
momorphisms.

Example 2.15 (Ginsburg [9]). Let K = a{ b`a` | ` > 1}∗ and L = { amb2m | m > 1}∗. Then
K−1L ∩ b∗ = { b2n | n > 1}. Therefore, the ordinary languages are not closed under the quotient
operation.

Example 2.16. Let L = { ambmcnd3n+2 |m,n > 0}. Then (1
2L)∩ a∗b∗c∗d = { anbncnd | n > 0},

and therefore the ordinary languages are not closed under the 1
2 operation.

Exercises

2.4.1. Consider the following quasi-square-root operation on formal languages.
√
L = {w | ww ∈ L}

It is certainly not an inverse of concatenation, and should be regarded as a kind of joke.
Prove that the ordinary languages are not closed under this operation.
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x1 xnx2 yn y2 y1xn–1 yn–1

S→α1A2β1

A2→α2A3β2

An–1→αn–1Anβn–1

An→αnβn

... ...

~

S→ε
x1 xnx2 xn–1...yn y2 y1yn–1 ...

A2→β1Sα1

An→βn–1An–1αn–1
~

~~

S'→βnAnαn
~

~

Figure 2.6: Construction for the cyclic shift: (left) a parse tree of a string uv in the original
grammar; (right) turning this tree inside out to obtain a parse tree of vu in the new grammar.

2.5 Normal forms

No ε rules, no chain rules: Chomsky nf. No left recursion (and even left chains): Greibach
nf. No left or right recursion (and chains): Rosenkrantz nf.

2.5.1 Eliminating null rules

Example 2.17. Consider the following grammar that defines the language {ab, b}.

S → AB

A→ ε | a
B → b

It generates the string b by producing ε from A and b from B. Once the rule A→ ε is eliminated,
it is no longer possible to obtain ε from A in the concatenation AB, but the same effect can
be achieved by not referring to A at all, that is, by including a new rule S → B, which means
essentially AB with A replaced by ε.

S → AB | B
A→ a

B → b

To do that, one first has to determine, which symbols generate ε.

Lemma 2.7. There exists an algorithm that, given a grammar G = (Σ, N,R, S), constructs the
set of category symbols generating the empty string.

Nullable(G) = {A |A ∈ N, ε ∈ LG(A)}

Proof. Nested set construction:

Nullable0(G) = ∅,
Nullablei+1(G) = {A ∈ N | there is a rule A→ X1 . . . X` with X1, . . . , X` ∈ Nullablei(G)}.
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This sequence actually represents the sequence ϕk(⊥) taken modulo {ε}. Correctness: A ∈
Nullablek(G) if and only if ε ∈ [ϕk(⊥)]A.

Lemma 2.8. Let G = (Σ, N,R, S) be a grammar and let Nullable(G) be as in Lemma 2.7.
Construct another grammar G′ = (Σ, N,R′, S), where R′ contains all rules of the form

A→ X1 . . . X` (if there is a rule A→ θ0X1θ1 . . . X`θ` in R,
with ` > 1 and θ0, . . . , θ` ∈ Nullable(G)∗).

Then, for every A ∈ N , LG′(A) = LG(A) \ {ε}.

Proof. ⇒© Let a string w ∈ Σ∗ be representable as X ∈ Σ∪N in the grammar G′, (`G′ X(w)). It
is claimed that w is then representable as X in the grammar G (`G X(w)), and also that w 6= ε.
Induction in the number of steps in the proof `G′ X(w).

Basis: none. Then X = w = a and `G a(a), as claimed.
Induction step. Let X = A ∈ N and consider the last step of the deduction, which is

X1(w1), . . . , X`(w`) `G′ A(w) for some rule A → X1 . . . X` ∈ R′ and for some partition w =
w1 . . . w`. Such a rule exists, because the original grammar has a rule A → θ0X1θ1 . . . X`θ` in
R, with θ0, . . . , θ` ∈ Nullable(G)∗. Let θi = Yi,1 . . . Yi,mi with Yi,j ∈ Nullable(G). Then,
by the definition of Nullable, `G Yi,j(ε). By the induction hypothesis for Xi(wi), it follows
that `G Xi(wi). Using these items as premises allows the following deduction by the rule
A→ θ0X1θ1 . . . X`θ`:

{Xi(wi)}ni=1, {Yi,j(ε)}i,j `G A(w).

Furthermore, the induction hypothesis asserts that each wi is non-empty, and since ` > 1, the
string w must be non-empty as well.
⇐© Assume that `G X(w) and w 6= ε. The claim is `G′ X(w), proved by induction on the

length of the proof.
Basis: X = w = a, `G a(a) and `G′ a(a).
Induction step: ***TBW***

2.5.2 Eliminating unit rules

Lemma 2.9. Let G = (Σ, N,R, S) be a grammar, in which all rules are of the form A → α
with |α| > 1, and accordingly ε /∈ LG(A) for all A ∈ N . Then the grammar G′ = (Σ, N,R′, S),
where R′ contains a rule of the form A→ α if and only if there is a sequence of rules A0 → A1,
A1 → A2, . . . , Ak−1 → Ak, Ak → α in R, where A0 = A and k > 0.

More or less like transformation of ε-NFA to NFA.
Together with Lemma 2.7 and Lemma 2.8, this gives a proof of Theorem 2.7.

2.5.3 The Chomsky normal form

Definition 2.2. An ordinary grammar G = (Σ, N,R, S) is said to be in Chomsky normal form,
if each rule in R is of one of the following forms.

A→ BC (B,C ∈ N)

A→ a (a ∈ Σ)

S → ε (only if S never occurs in the right-hand sides of any rules)

Actually, Chomsky [5] presented a transformation to a slightly stronger form than the one
in Definition 2.2. However, the name Chomsky normal form is universally applied to the form
given in Definition 2.2.
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Theorem 2.7 (Chomsky [5, Thm. 5]). For every grammar there exists and can be effectively
constructed a grammar in the Chomsky normal form that defines the same language.

Sketch of a proof. Preparation: ensure right-hand sides are at most two symbols long.
Step 1: remove all null rules (or ε-rules) of the form A→ ε.
Step 2: remove unit rules of the form A→ B.
Last step: move symbols from Σ to separate rules.

2.5.4 Left recursion and Greibach normal form

Left dependence A → Bα. May end up in a left recursion A → Bα, B → Aβ. Direct left
recursion A→ Aα. Relevant for left-to-right parsing. A normal form that rules out left recursion
by disallowing any left dependencies.

Definition 2.3. An ordinary grammar G = (Σ, N,R, S) is said to be in the Greibach normal
form, if each rule in R is of one of the following forms.

A→ aα (a ∈ Σ, α ∈ (Σ ∪N)∗)

S → ε (only if S never occurs in the right-hand sides of any rules)

Theorem 2.8 (Greibach [12]). For every ordinary grammar there exists and can be effectively
constructed a grammar in the Greibach normal form that describes the same language.

The transformation works through elementary transformations of two types. The first trans-
formation eliminates direct left recursion for a chosen symbol A.

Lemma 2.10 (Elimination of direct left recursion). Let

A→ Aα1 | . . . | Aαm | β1 | . . . | βn

be all rules for A, where none of β1, . . . , βn begins with A. Then they can be replaced with the
rules

A→ β1 | . . . | βn | β1A
′ | . . . | βnA′

A′ → α1A
′ | . . . | αmA′ | α1 | . . . | αm

where A′ is a new category symbol.

Note that this transformation does not introduce any new left dependencies, because the
right-hand sides of the new rules for A begin with the same strings β1, . . . , βn as some of the
original rules for A. Furthermore, no symbol in the grammar has a left dependence on A′, and
therefore any left recursion through A′ is impossible.

Example 2.18. Consider the following left-recursive grammar for arithmetical expressions.

E → E + E︸︷︷︸
α1

| E * E︸︷︷︸
α2

| (E)︸︷︷︸
β1

| 1︸︷︷︸
β2

According to Lemma 2.10, it is equivalently transformed to the grammar below.

E → (E) | 1 | (E)E′ | 1E′

E′ → +EE′ | *EE′ | +E | *E
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Lemma 2.11 (Substitution). Let

A→ α1 | . . . | αm

be all rules for A. Then a rule B → βAγ, with B 6= A and β, γ ∈ (Σ∪N)∗, can be replaced with
the following collection of rules.

B → βα1γ | . . . | βαmγ

With the two types of transformation rules defined, the transformation to the Greibach
normal form proceeds as follows.

Proof of Theorem 2.8. Assume that the given grammar G = (Σ, N,R, S) is already in the Chom-
sky normal form. The first stage of the construction eliminates left recursion in the grammar.
and the following second stage removes all remaining left dependencies.

Fix any enumeration of the category symbols: N = {A1, . . . , An}. At the first stage, these
symbols shall be processed one by one. For every subsequent symbol Ai processed, a new symbol
A′i is created, with all rules of the form A′i → α, where α ∈ (Σ ∪ N)+. No symbol has a left
dependence on A′i.

Denote by (Ai, Aj) the condition that the grammar contains any rules of the form Ai → Ajα.
Such a pair can be processed to remove all these rules as follows. A pair of two identical symbols
(Ai, Ai) is processed according to Lemma 2.10, with A = Ai: this removes direct left recursion
in Ai and creates a new symbol A′i with the same left dependencies as Ai. Each pair (Ai, Aj),
with i 6= j, is processed by taking every rule Ai → Ajα (for any α), and replacing Aj with all its
rules using Lemma 2.11. Then the sequence of transformations used to eliminate left recursion
from the grammar is given below.

(A1, A1), (A2, A1), (A3, A1), . . . , (An−1, A1), (An, A1),
(A2, A2), (A3, A2), . . . , (An−1, A2), (An, A2),

(A3, A3), . . . , (An−1, A3), (An, A3),
. . .

...
(An−1, An−1), (An, An−1),

(An, An).

For example, the first line of the table begins with applying Lemma 2.10 to A = A1, thus
eliminating direct left recursion in A1. Then, for all remaining rules with a left dependence on A1,
which are of the form Aj → A1α for j ∈ {2, . . . , n}, Lemma 2.11 is applied to substitute A = A1

in this rule. The resulting grammar has no rules of the form Ai → A1α, for any i ∈ {1, . . . , n}.
The second line similarly ensures that there are no rules of the form Ai → A2α, for any

i ∈ {1, . . . , n}. This process continues until the last line, which eliminates the last remaining left
recursion in An. After the last line is processed, all rules with a left dependencies are either of
the form Ai → Ajα, with j > j, or of the form A′i → Ajα, for any i, j ∈ {1, . . . , n}.

At the second stage of the transformation, these left dependencies are eliminated in the
following order. The last symbol An already has no left dependencies. Then, all left dependencies
are removed for An−1 (which can only depend on An), then from An−2, and so on until A1. After
that, all remaining left dependencies are in the rules A′i → Ajα, which can be removed in any
order.

2.5.5 The Rosenkrantz normal form

A strengthened version of the Greibach normal form, with symbols concatenated on both
sides.
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Definition 2.4 (Rosenkrantz [19]). An ordinary grammar G = (Σ, N,R, S) is said to be in the
Rosenkrantz normal form, if each rule in R is of one of the following forms.

A→ aαd (a, d ∈ Σ, α ∈ (Σ ∪N)∗)

A→ a (a ∈ Σ)

S → ε (only if S never occurs in the right-hand sides of any rules)

Theorem 2.9 (Rosenkrantz [19]). For every ordinary grammar there exists and can be effectively
constructed a grammar in the Rosenkrantz normal form that describes the same language.

Engelfriet [7] defined a different transformation.
First, need better understanding of Lemma 2.10. It is actually based on the fact that the

grammar
A→ b | Ac,

generates the regular language bc∗. The same language is generated by another grammar

A→ b | bA′

A′ → cA′ | c

Expanded version of this transformation. First, there is a grammar

A→ aA | b | Ad | AcA,

and it generates the language a∗bc∗(da∗bc∗)∗, which is still regular. There is the following alter-
native grammar for this language:

Abb → aAbbd | aAbcb | bAcbd | bAccb | b
Abc → aAbca | aAbbc | bAcca | bAcbc | bc | a
Acb → dAcbd | dAccb | cAbbd | cAbcb | cb | d
Acc → dAcca | dAcbc | cAbca | cAbbc | c

Lemma 2.12 (Elimination of direct left and right recursion). Let A ∈ N , and consider the
following general form of the list of rules rules for A, where none of αi begins with A, none of
γi ends with A, and none of βi begins or ends with A.

A→ α1A | . . . | αkA | | β1 | . . . | β` | Aγ1 | . . . | Aγm | Aδ1A | . . . | AδnA

Then these rules can be replaced with the following collection of rules (for all applicable pairs of
i and j), where A′, A′′ and A′′′ are three new category symbols.

A→ αiAγj | αiA′βj | βiA′′γj | βiA′′′βj | βi
A′ → αiA

′αj | αiAδj | βiA′′′αj | βiA′′δj | βiδj | αi
A′′ → γiA

′′γj | γiA′′′βj | δiAγj | δiA′βj | δiβj | γi
A′′′ → γiA

′′′αj | γiA′′δj | δiA′αj | δiAδj | δi

Used in the proof of Theorem 2.9.
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2.5.6 Generalized normal form theorem

Theorem 2.10 (Blattner and Ginsburg [3]). Let (k0, . . . , k`) with ` > 2 be any finite sequence
of non-negative integers. Then for every ordinary grammar G there exists and can be effectively
constructed an ordinary grammar G′ = (Σ, N,R, S) generating the same language, in which every
rule is of one of the following two forms.

A→ u0B1u1 . . . B`u` (ui ∈ Σ∗, Bi ∈ N, |ui| = ki)

A→ w (w ∈ Σ∗)

The same result was independently obtained by Maurer, Salomaa and Wood.



Chapter 13

Selected theoretical topics

13.1 Homomorphic characterizations

Representing every ordinary language L ⊆ Σ∗ as a homomorphic image of an intersection of
a Dyck language Dk with a regular language M .

L = h(Dk ∩M)

In the best versions of this characterization, the homomorphism is symbol-to-symbol, that is,
a renaming of brackets to the alphabet Σ. Thus, in loose terms, the Chomsky–Schützenberger
theorem states that every ordinary language is a regular structure of well-nested brackets, renamed
to the target alphabet.

13.1.1 The Chomsky–Schützenberger theorem in the even form

All strings in the Dyck language are of even length, and so are their images under any symbol-
to-symbol homomorphisms. Therefore, the most obvious version of the Chomsky–Schützenberger
theorem applies only to languages of strings of an even length. This is a technical restriction
that will be lifted in the subsequent variants of this theorem.

For any number k > 1, consider the alphabet of k pairs of brackets,

Ωk = {a1, b1, . . . ak, bk},

where ai represents a left bracket and bi is its matching right bracket. Define the Dyck language
on k pairs of brackets, Dk ⊆ Ω∗k. by the following grammar.

S → SS | a1Sb1 | . . . | akSbk | ε

Theorem 13.1. A language L ⊆ (Σ2)∗ is ordinary if and only if there exists a number k > 1,
a regular language R ⊆ Ω∗k and a symbol-to-symbol homomorphism h : Ωk → Σ, such that L =
h(Dk ∩M).

The converse implication of Theorem 13.1 can be taken for granted, because the ordinary
languages are closed under homomorphisms (Theorem 2.4) and under intersection with regular
languages (Theorem 2.3). The task is to prove the forward implication of the theorem, that is,
to construct k, R and h for a given language L. It is convenient to assume that the language L
is described by a grammar in the following special variant of the Rosenkrantz normal form.

Lemma 13.1. Every ordinary language L ⊆ (Σ2)+ is generated by a grammar (Σ, N,R, S) with
all rules of the form

A→ bC1 . . . C`d (b, d ∈ Σ, ` > 0, C1, . . . , C` ∈ N),

where the symbols C1, . . . , C` in every such rule are pairwise distinct.
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Proof. Let G be a grammar generating the given ordinary language L ⊆ (Σ2)+. Consider the
alphabet Σ × Σ = { (a, b) | a, b ∈ Σ} and define the homomorphism h : (Σ × Σ)∗ → Σ∗ by
h
(
(a, b)

)
= ab. Then, by the closure of the ordinary languages under inverse homomorphisms

(Theorem 2.6), there exists a grammar G′ over the alphabet Σ× Σ generating the language

L(G′) = h−1(L(G)) = { (a1, b1)(a2, b2) . . . (an, bn) | a1b1a2b2 . . . anbn ∈ L(G)}.

By Theorem 2.9, this grammar can be transformed to a grammar G′′ generating the same lan-
guage over Σ× Σ, with all rules of the form

A→ (b, b′)C1 . . . C`(d, d
′) (b, b′, d, d′ ∈ Σ, ` > 0, C1, . . . , C` ∈ N) (13.1a)

A→ (a, a′) (a, a′ ∈ Σ) (13.1b)

Construct a grammar G′′′ over the alphabet Σ, with the following rules:

A→ bb′C1 . . . C`dd
′, for each “long” rule (13.1a) in G′′, (13.2a)

A→ aa′, for each “short” rule (13.1b) in G′′. (13.2b)

By construction, L(G′′′) = h(L(G′′)), and hence L(G′′′) = h(h−1(L(G))) = L(G).
Once each “long” rule (13.2a) in G′′′ is replaced with two rules A → bXd′ and X →

b′C1 . . . C`d, the resulting grammar still generates L(G) and all rules are of the desired form.
Finally, the requirement that every such rule has pairwise distinct symbols C1, . . . , C`, can

be met by making duplicate copies of any repeated category symbols. That is, if a rule refers to
two instances of C, then the second instance can be replaced with a new symbol C ′, which has
exactly the same rules as C. This completes the construction.

Consider an arbitrary language L ⊆ (Σ2)∗. By Lemma 13.1, the language L\{ε} is described
by a grammar G = (Σ, N,R, S) with each rule of the form

A→ bC1 . . . C`d (b, d ∈ Σ, ` > 0, C1, . . . , C` ∈ N),

where the symbols C1 . . . C` are pairwise distinct. Due to the latter condition, given a rule
A→ bC1 . . . C`d and one of the symbols Ci, one can identify the position i.

Each pair of brackets in Dk is labelled with two rules of the grammar: the current rule
A→ bC1 . . . C`d and the previous rule X → ξ, where ξ contains an instance of A. If the current
rule is the rule for the initial symbol used at the root of the parse tree, then the previous rule is
replaced with a dash (−). Formally, one can set k = (|R|+1)·|R| and consider the Dyck language
Dk. For the rest of this argument, a left and a right bracket of this kind shall be denoted by(X→ξ
A→bC1...C`d

and
)X→ξ
A→bC1...C`d

, respectively (rather than by ai and bi for some i).
Define the regular language R0

G as the set of all strings w ∈
(
Ωk

)∗ that have all 2-symbol
substrings of the following form: for some rule A → bC1 . . . C`d ∈ R with k > 1 and for
Ξ ∈ R ∪ {−} being either a rule referring to A or “−”,(Ξ

A→bC1...C`d

(A→bC1...C`d

C1→γ1 , with C1 → γ1 ∈ R,)A→bC1...C`d

Ci→γi

(A→bC1...C`d

Ci+1→γi+1
, with i ∈ {1, . . . , k − 1}, Ci → γi, Ci+1 → γi+1 ∈ R,)A→bC1...C`d

C`→γk

)Ξ
A→bC1...C`d

, with C` → γk ∈ R,

or, for some rule A→ bd ∈ R, and for Ξ ∈ R ∪ {−} as above,(Ξ
A→bd

)Ξ
A→bd.
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Let RG be the subset of R0
G containing the strings that begin with a symbol

(−
S→σ and end with

a symbol
)−
S→σ. Furthermore, if ε ∈ L, then RG contains ε as well.

Define the homomorphism h : Ωk → Σ as follows:

h
((Ξ

A→bC1...C`d

)
= b h

()Ξ
A→bC1...C`d

)
= d

Example 13.1. Consider the grammar

S → aSBb | aa
B → bb

generating the language { an+2b3n | n > 0}. Then the string w = aaaabbbbbb is obtained as the
homomorphic image of the following sequence of brackets in Ωk ∩MG:

S→aSBb
S→aa( S→aSBb

S→aa)S→aSBb
S→aSBb(–

S→aSBb( S→aSBb
B→bb( S→aSBb

B→bb) S→aSBb
B→bb( S→aSBb

B→bb)S→aSBb
S→aSBb) –

S→aSBb)
Figure 13.1 illustrates how this sequence of brackets encodes the parse tree of w.

S→aSBb
S→aa( S→aSBb

S→aa)S→aSBb
S→aSBb(–

S→aSBb( S→aSBb
B→bb( S→aSBb

B→bb) S→aSBb
B→bb( S→aSBb

B→bb)S→aSBb
S→aSBb) –

S→aSBb)

S→aa

a aa a b b b b b b

B→bb B→bb

S→aSBb

S→aSBb

Figure 13.1: The parse tree of a string in Example 13.1, encoded in a sequence of brackets.
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It remains to prove that the constructed Dyck language Dk, regular language RG and ho-
momorphism h satisfy the equality h(Dk ∩MG) = L. This is achieved in the below series of
statements.

Claim 13.1.1. Let x =
(Ξ
A→αy

)Ξ
A→α ∈ R

0
G, where y ∈ Dk. Then, h(x) ∈ LG(α).

Proof. Induction on the length of x.
Basis: |x| = 2. Then the rule A → α must have α = bd with b, d ∈ Σ, and accordingly

x =
(Ξ
A→bd

)Ξ
A→bd. Then h(x) = bd, and the condition h(x) ∈ LG(α) holds true.

Induction step. Let x =
(Ξ
A→bC1...C`d

y
)Ξ
A→bC1...C`d

with |y| > 0. Since y ∈ Dk, it is a
concatenation y = y1 . . . y` of ` > 1 non-empty strings from Dk, none of which can be further
factored into elements of Dk. Because x ∈ R0

G and its first symbol is
(Ξ
A→bC1...C`d

, its next

symbol, which is the first symbol of y1, must be
(A→bC1...C`d

C1→γ1 , for some rule C1 → γ1 ∈ R. Then
the last symbol of y1 is

)A→bC1...C`d

C1→γ1 , and the next symbol of x must be
(A→bC1...C`d

C2→γ2 for some rule
C2 → γ2 ∈ R. This symbol is accordingly the first symbol of y2. Continuing the same argument
leads to yi =

(A→bC1...C`d

Ci→γi
zi
)A→bC1...C`d

Ci→γi
for all i ∈ {1, . . . , k}; applying the induction hypothesis

to each yi gives that h(yi) ∈ LG(γi).
Finally, the condition x ∈ R0

G ensures that the last symbol of yk, which is
)A→bC1...C`d

C`→γk
, must

be followed by a symbol
)Ξ′
A→bC1...C`d

, for some Ξ′ ∈ R∪{−}. Since this cannot be the first symbol

of yk+1, it follows that ` = k, Ξ′ = Ξ and x =
(Ξ
A→bC1...C`d

y1 . . . yk
)Ξ
A→bC1...C`d

. Therefore,

h(x) = b · h(y1) · . . . · h(yk) · d ∈ LG(bγ1 . . . γkd) ⊆ LG(bC1 . . . C`d),

as claimed.

Claim 13.1.2. If w ∈ LG(α) for some rule A → α and Ξ ∈ R ∪ {−}, then w = h(x) for some
string x =

(Ξ
A→αy

)Ξ
A→α ∈ R

0
G with y ∈ Dk.

Proof. Induction on the length of w. Let α = bC1 . . . C`d and accordingly let w = bu1 . . . ukd
with ui ∈ LG(Ci). For each i ∈ {1, . . . , k}, let Ci → γi with ui ∈ LG(γi) be the rule
used to generate ui. By the induction hypothesis, each ui is representable as h(yi), for
yi =

(A→bC1...C`d

Ci→γi
zi
)A→bC1...C`d

Ci→γi
∈ R0

G with zi ∈ Dk.
Define y = y1 . . . yk. Then y ∈ Dk, because it is a concatenation of k elements of Dk,

each enclosed in a pair of matching brackets. To see that x ∈ R0
G, it is sufficient to check

all two-symbol substrings at the boundaries of yi. If k > 1, these are
(Ξ
A→bC1...C`d

(A→bC1...C`d

C1→γ1 ,)A→bC1...C`d

Ci→γi

(A→bC1...C`d

Ci+1→γi+1
for all i ∈ {1, . . . , k − 1}, and

)A→bC1...C`d

Ci→γi

)Ξ
A→bC1...C`d

, and all of them

are allowed by the definition of R0
G. If k = 0, there is a unique substring

(Ξ
A→bd

)Ξ
A→bd, which is

also allowed.

Now the statement of Theorem 13.1 is proved as follows.
If a non-empty string w is in in L(G), then there is a rule S → σ with w ∈ LG(σ), and, by

Claim 13.1.2, w = h(x) for some x =
(−
S→σy

)−
S→σ ∈ Dk ∩M0

G. By its first and its last symbol, x
is in RG. Accordingly, w ∈ h(Dk ∩MG).

Conversely, assume that w ∈ h(x) for some x ∈ Dk∩MG. Then the first symbol of x is
(−
S→σ,

its last symbol is
)−
S→σ, and these two symbols have to be matched to each other, because R0

G

does not allow such symbols in the middle of a string. Then x =
(−
S→σy

)−
S→σ for some y ∈ Dk.

By Claim 13.1.1 for this string, h(x) ∈ LG(σ) ⊆ L(G).
Finally, by definition, the empty string is in RG if and only if it is in L. Altogether, h(Dk ∩

MG) = L, as claimed.
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13.1.2 Further forms of the Chomsky–Schützenberger theorem

For arbitrary languages, where the length of the strings is not restricted to be even, this
theorem has several possible statements.

One of them relies on a variant of the Dyck language equipped with neutral symbols. For
any numbers k and `, this language, D̂k,`, is defined over the alphabet

Ωk,` = {a1, b1, . . . , ak, bk, c1, . . . , c`}

by the following grammar:

S → SS | a1Sb1 | . . . | akSbk | c1 | . . . | c` | ε

Denote D̂k,` = D̂{1,...,k}, {1,...,`} and let Ωk,` be the alphabet, over which it is defined.

Theorem 13.2 (The Chomsky–Schützenberger theorem in the form with neutral symbols). A
language L ⊆ Σ∗ is ordinary if and only if there exists numbers k, ` > 1, a regular language
R ⊆ Ω∗k,` and a symbol-to-symbol homomorphism h : Ωk,` → Σ, such that L = h(D̂k,` ∩M).

Another variant retains the Dyck language without neutral symbols, but at the expence of
using erasing homomorphisms.

Theorem 13.3 (The Chomsky–Schützenberger theorem in the erasing form). A language L ⊆ Σ∗

is ordinary if and only if there exists a number k, a regular language R ⊆ Ω∗k and homomorphism
h : Ωk → Σ∗, such that L = h(Dk ∩M).

Originally, Chomsky and Schützenberger [6] proved the theorem in the erasing form, and
used a proof in which every right bracket bi was erased.

Finally, there is another statement using the standard Dyck language without neutral symbols
and non-erasing homomorphisms. This variant has to exclude one-symbol strings, because they
cannot be obtained as non-erasing homomorphic images of any strings in the Dyck language.

Theorem 13.4. A language L ⊆ Σ∗\Σ is ordinary if and only if there exists a number k, a regular
language R ⊆ Ω∗k and a non-erasing homomorphism h : Ωk → Σ+, such that L = h(Dk ∩M).

13.2 Inverse homomorphic characterizations

13.2.1 Greibach’s “hardest language”

Theorem 13.5 (Greibach [13]). There exist such an alphabet Σ0 and such an ordinary language
L0 ⊆ Σ∗0, that for every ordinary language L over any alphabet Σ there is such a homomorphism
h : Σ→ Σ∗0, that L = h−1(L0) if ε /∈ L and L = h−1(L0 ∪ {ε}) if ε ∈ L.

The image of every symbol a ∈ Σ under the homomorphism h will contain basically the
entire grammar for the language L, and the language L0 will check the rules of the grammar
given within the images of symbols.

Let G = (Σ, N,R, S) be any grammar in the Greibach normal form that defines the language
L. Assume that N = {A1, A2, . . . , A|N |}, S = A1 and each rule in R is of the form

Ai → sAj1 . . . Aj` (s ∈ Σ, ` > 0, i, j1, . . . , j` ∈ {1, . . . , |N |}) (13.3)

Let Σ0 = {a, b, c, d,#} be the alphabet used for encoding grammars. The symbols in Σ0 have
the following meaning.

• The symbol a is used to represent each symbol Aj in the right-hand side of any rule as aj .
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• The symbol b is used to denote Ai in the left-hand side of a rule as bi.

• The symbol c represents concatenation in the right-hand side of any rule, so that a rule
(13.3) is represented by the following string in {a, b, c}∗:

σ(Ai → sAj1 . . . Aj`) = bicaj`caj`−1c . . . caj2caj1 .

• The symbol d is used to separate multiple rules with the right-hand sides beginning with
the same symbol s.

• The image h(s) of any symbol s ∈ Σ is concluded with the separator symbol # ∈ Σ0.

Consider a symbol s ∈ Σ, and let {ρ1, . . . ρk} ⊆ R be all rules with the right-hand side
beginning with s. Then define the image of s under h as

hG(s) = σ(ρ1)dσ(ρ2)d . . . dσ(ρk)#,

and if k = 0, then let hG(s) = #.

Example 13.2. Let Σ = {s, t} and consider a grammar with the rules

A1 → sA1A2 | t
A2 → tA2 | t

which generates the language L = { smtn | 0 6 m < n}. Then

hG(s) = bca2ca# and

hG(t) = bdb2ca2db2#,

and accordingly the string sttt ∈ L has the following image:

hG(sttt) = bca2ca#bdb2ca2db2#bdb2ca2db2#bdb2ca2db2#.

This string over Σ0 contains sufficient information to verify that sttt is in L(G).

The goal is to construct a grammar that will generate the image hG(w) of a string w ∈ Σ∗ if
and only if w ∈ L(G). This grammar has to check the following condition.

Definition 13.1. Let a string over Σ0 ∈ {a, b, c, d,#} be called m-correct, with m > 1, if it
is of the form x1dx2d . . . dxk#y2# . . .#yn#, where k, n > 1, xi ∈ {a, b, c}+, yj ∈ {a, b, c, d}+
and there exists a number i ∈ {1, . . . , k}, for which xi = bmam`cam`−1c . . . cam1 and there are
numbers 1 = n1 < n2 < . . . < n` < n`+1 = n satisfying the following: for each j ∈ {1, . . . , `} the
substring ynj+1# . . . ynj+1# is mj-correct.

Define L0 ⊆ Σ∗0 as the language of all 1-correct strings.

Lemma 13.2. The language L0 is generated by the following grammar.

S → XdS | bA#

X → aX | bX | cX | a | b | c
A→ cCA | B
C → aCb | aDb
D → DXd | A#

B → dXB | ε
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s t

A1→sA1A2

bcaaca #  b d bbcaa d bb #  b d bbcaa d bb #  b d bbcaa d bb #

t t

A1→t

A2→tA2

A2→t

h(s) h(t) h(t) h(t)
A1→sA1A2 A1→t A2→tA2 A2→t

Figure 13.2: A parse of a string w = sttt decoded from its homomorphic image hG(sttt), as in
Example 13.2.
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