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Chapter 6

Multi-component grammars

6.1 Pair-wrapping grammars

Joshi, Levy and Takahashi [3] introduced tree-adjoining grammars, defined by tree rewriting.
Later, Pollard [4] defined a model called a “head grammar”, which was proved equivalent to tree-
adjoining grammars in the papers by Vijay-Shanker and Joshi [8] and by Weir, Vijay-Shanker and
Joshi. The first definition of this model involved heavy notation; its essense was distilled in an
improved definition by Rounds [6, Sect. 5], which is adopted in this text with minor adjustments.
The model is given a new name, pair-wrapping grammars, which better explains its meaning.

6.1.1 Strings with a gap

Strings with a gap, or simply pairs: u : v with u, v ∈ Σ∗. For any two languages K,L ⊆ Σ∗,
denote by K :L the set of strings with a gap {u : v | u ∈ K, v ∈ L}. The set of all strings with a
gap: Σ∗ : Σ∗. Wrapping operation on strings with a gap: (u : v)(x : y) = ux : yv. This operation
is used instead of the concatenation, with ε : ε as an identity. Another operation of flattening a
string with a gap, that is, filling the gap with the empty string and pairing this concatenation
with the empty string: (u : v) : ε = uv : ε and symmetrically, ε : (u : v) = ε :uv.

Definition 6.1. A pair-wrapping grammar is a quadruple (Σ, N,R, S), where the rules in R are
of the form

A→ X1 . . . X`,

for ` > 0 and Xi ∈ N ∪ {Y : ε | Y ∈ Σ∪N} ∪ { ε :Z |Z ∈ Σ∪N}. An empty sequence X1 . . . X`

with ` = 0 is denoted by ε : ε.

In the following, a more general syntax for rules in pair-wrapping grammars shall be adopted:
a rule of the form A → X1 . . . X` may have any Xi either of the form B ∈ N , of the form
Y1 . . . Ym :Z1 . . . Zn, where m,n > 0 and Yj , Zj ∈ Σ ∪N . Such a symbol Xi shall be regarded as
an abbreviation for flattening all Yj and Zj and wrapping the resulting pairs as follows.

Y1 . . . Ym :Z1 . . . Zn = (Y1 : ε) . . . (Ym : ε)(ε :Zn) . . . (ε :Z1).

Each symbol A ∈ N defines a language LG(A) ⊆ Σ∗ × Σ∗ of strings with a gap. Then
the language of standard strings generated by the grammar is defined by filling the gap in all
elements of LG(S) with the empty string: L(G) = {uv | u : v ∈ LG(S)}.

A standard string has two sides; a string with a gap has four, and a pair-wrapping grammar
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Multi-component grammars 3

can independently append substrings from each of the four sides.

(a : ε) · (u : v) = au : v

(u : v) · (b : ε) = ub : v

(u : v) · (ε : c) = u : cv

(ε : d) · (u : v) = u : vd

Used in the following example.

Example 6.1. Consider the pair-wrapping grammar G = ({a, b, c, d}, {S}, R, S), where R con-
tains the following two rules

S → (a : d)S(b : c) | ε : ε

The symbol S defines the set { anbn : cndn | n > 0}, and accordingly, the grammar defines the
string language { anbncndn | n > 0}.

6.1.2 Definition by deduction

Definition by deduction of items A(u : v). Axioms: u : v(u : v). Filling the gap:
A(u : v) ` A : ε(uv : ε), A(u : v) ` ε :A(ε :uv). Grammar rule: X1(u1 : v1), . . . , Xn(un : vn) `
A(u1 . . . un : vn . . . v1).

Definition 6.1(D). For a pair-wrapping grammar G = (Σ, N,R, S), consider elementary
propositions of the form “a string with a gap u : v has a property X”, with w ∈ Σ∗ and
X ∈ N ∪ {Y : ε | Y ∈ Σ ∪ N} ∪ { ε :Z | Z ∈ Σ ∪ N}, denoted by X(u : v). The deduction
system uses the following axioms:

` a : ε(a : ε) (for all a ∈ Σ),
` ε : a(ε : a) (for all a ∈ Σ).

Each rule A→ X1 . . . X` is regarded as the following schema for deduction rules:

X1(u1 : v1), . . . , X`(u` : v`) ` A(u1 . . . u` : v` . . . v1) for all u1, v1, . . . , u`, v` ∈ Σ∗.

Furthermore, there are the following flattening rules:

A(u : v) ` A : ε(uv : ε) (for all A ∈ N and u, v ∈ Σ∗),
A(u : v) ` ε :A(ε :uv) (for all A ∈ N and u, v ∈ Σ∗).

Whenever an item X(u : v) can be deduced from the above axioms by the given deduction rules,
this is denoted by ` X(u : v). Define LG(X) = {u : v | ` X(u : v)} and L(G) = {uv | ` S(u : v)}.

Example 6.1(D). For the grammar in Example 6.1.

` S(ε : ε) (S → ε : ε)

` a : d(a : d) (axiom)

` b : c(b : c) (axiom)

a : d(a : d), S(ε : ε), b : c(b : c) ` S(ab : cd) (S → (a : d)S(b : c))

a : d(a : d), S(ab : cd), b : c(b : c) ` S(aabb : ccdd) (S → (a : d)S(b : c))
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6.1.3 Definition by rewriting

Definition 6.1(R). For a pair-wrapping grammar G = (Σ, N,R, S), consider terms over the
operations of wrapping XY (an associative binary operator) and pair composition X :Y (a
non-associative binary operator).

The relation =⇒ of one-step rewriting on the set of terms is defined as follows:

• Using a rule A → X1 . . . X` ∈ R, any atomic subterm A of any term can be rewritten by
the subterm X1 . . . X`:

. . . A . . . =⇒ . . . X1 . . . X` . . .

• A subterm of the form (u : v) :w may be rewritten with uv :w.

• A subterm of the form w : (u : v) may be rewritten with w :uv.

Define LG(X) = {u : v | S =⇒∗ u : v} and L(G) = {uv | u : v ∈ LG(S)}.

Example 6.1(R). For the grammar in Example 6.1.

S =⇒ (a : d)S(b : c) =⇒ (a : d)(a : d)S(b : c)(b : c) = (aa : dd)S(bb : cc) =⇒ (aa : dd)(ε : ε)(bb : cc)
= aabb : ccdd

6.1.4 Definition by language equations

Unknown languages of strings with gaps, L ⊆ Σ∗ × Σ∗. Their wrapping: K · L =
{uu′ : v′v | u : v ∈ K, u′ : v′ ∈ L}. Filling the gap: K :L = {uv :u′v′ | u : v ∈ K, u′ : v′ ∈ L}.
These operations are monotone and continuous.

Definition 6.1(E). System corresponding to a grammar:

A =
⋃

A→X1...X`∈R

m⋂
i=1

X1 · . . . ·X` (for all A ∈ N)

Each Xi ∈ Σ : ε∪ε : Σ in the equation represents a constant language {a : ε} or {ε : a}, and a rule
A→ ε : ε is represented by a constant {ε : ε}. Let (. . . , LA, . . .)A∈N with LA ⊆ Σ∗ : Σ∗ be the least
solution of this system. Then LG(A) is defined as LA for each A ∈ N .

Example 6.1(D). For the grammar in Example 6.1, the corresponding language equation is

S = {a : d} · S · {b : c} ∪ {ε : ε}

6.1.5 Equivalence of the three definitions

To see that Definitions 6.1(R), 6.1(D) and 6.1(E) are equivalent.

Theorem 6.1. Let G = (Σ, N,R, S) be a pair-wrapping grammar, as in Definition 6.1. For
every X ∈ Σ : ε ∪ ε : Σ ∪N and u, v ∈ Σ∗, the following three statements are equivalent:

(R). X =⇒∗ u : v,

(D). ` X(u : v),

(E). u : v ∈
[⊔

k>0 ϕ
k(⊥)

]
X
.
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Proof. (R) ⇒ (D) Induction on the number of steps in the rewriting of X to u : v.
Basis: X =⇒∗ u : v in zero steps. This means that X = u : v = a : ε or X = u : v = ε : a, and

in both cases ` X(u : v) is an axiom.
Induction step. Let X =⇒k w with k > 1. Then X = A ∈ N and the rewriting begins by

applying a rule A→ X1 . . . X`. Each Xi belongs to N ∪{Y : ε |Y ∈ Σ∪N}∪{ ε :Z |Z ∈ Σ∪N},
and is rewritten to a string with a gap ui : vi ∈ Σ∗ in less than k steps, where u = u1 . . . u` and
v = v` . . . v1. By the induction hypothesis, ` Xi(ui : vi) for each i. and the desired item A(u : v)
can be deduced as

X1(u1 : v1), . . . , X`(u` : v`) ` A(u : v) by the rule A→ X1 . . . X`.

***other cases TBW***

6.1.6 Examples

Example 6.2. The following pair-wrapping grammar generates the language {ww |w ∈ {a, b}∗}:

S → (a : ε)S(ε : a) | (b : ε)S(ε : b) | ε : ε

The language of strings with gaps defined by the symbol S is {w :w | w ∈ {a, b}∗}.

6.1.7 Pumping lemma

Pumping from all four sides of a string with a gap.

Lemma 6.1 (Pumping lemma for pair-wrapping grammars). For every pair-wrapping language
L ⊆ Σ∗ there exists a constant p > 1, such that for every string w ∈ L with |w| > p there exists a
partition w = x0 u1x1u2 x2 u3x3u4 x4, where |u1|+ |u2|+ |u3|+ |u4| > 0 and |u1x1u2|+ |u3x3u4| 6
p, such that x0 ui1x1u

i
2 x2 u

i
3x3u

i
4 x4 ∈ L for all i > 0.

Example 6.3. The language { anbncndnen |n > 0} is not defined by any pair-wrapping grammar.

Proof. Suppose it is defined by one. Let p be the constant given by the pumping lemma,
and consider the string w = apbpcpdpep. The pumping lemma gives a partition w =
x0 u1x1u2 x2 u3x3u4 x4. If any of u1, u2, u3, u4 spans over any border between the blocks (that
is, if it contains symbols of different types), then a single pumping produces a string not in L.

Therefore, each ui is a substring of ap, bp, cp, dp or ep. Since there are five blocks in w and only
four strings ui in the partition. at least one of the blocks is disjoint with u1, u2, u3, u4, and is not
subject to pumping. On the other hand, since |u1u2u3u4| > 0, at least one of the blocks contains
some symbols from u1, u2, u3 or u4, and therefore the pumped string w′ = x0 u

2
1x1u

i
2 x2 u

2
3x3u

i
4 x4

contains more than p symbols in that block, but only p symbols in the block that is not pumped.
Accordingly, w′ is not in L, which contradicts the assertion of the pumping lemma.

Example 6.4. The language {www |w ∈ {a, b}∗} is not defined by any pair-wrapping grammar.

Kanazawa and Salvati proved that the language {w | w ∈ {a, b, c}∗, |w|a = |w|b = |w|c} is
not a pair-wrapping language.

Example 6.5 (Radzinski [5]). The language { abk1abk2 . . . abkn | k1 > k2 > . . . > kn > 0} is not
defined by any pair-wrapping grammar.
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6.1.8 Normal forms

Normal form, with all rules of the form

A→ BC,

A→ B : ε,

A→ ε :C,

A→ a : ε,

A→ ε : a

where B,C ∈ N and a ∈ Σ∗.

Theorem 6.2. For every pair-wrapping grammar there exists and can be effectively constructed
a pair-wrapping grammar in the normal form generating the same language.

6.1.9 Closure properties

Obviously closed under union and concatenation.

Theorem 6.3 (Vijay-Shanker and Joshi [8]). Not closed under intersection and complementa-
tion.

Proof. The language { anbncndnen | n > 0} is an intersection of two linear ordinary languages,
as well as a complement of a linear ordinary language.

Closed under homomorphisms and inverse homomorphisms.

Exercises

6.1.1. Construct a pair-wrapping grammar for the language { anbncn | n > 0}.

6.1.2. Construct a pair-wrapping grammar for the language {wxw | w ∈ {a, b}+, x ∈ {a, b}∗}.

6.1.3. Let D ⊆ {a, b}∗ be the Dyck language. Construct a pair-wrapping grammar for the lan-
guage {wc|w| | w ∈ D} = {ε, abcc, aabbcccc, ababcccc, aaabbbcccccc, . . .}.



Chapter 7

First-order theory of grammars

7.1 First-order logic over positions in the input

First-order logic with least fixpoint was first defined by Chandra and Harel [1] as a pro-
gramming language for expressing queries to relational databases. It was further studied by
Immerman [2] and by Vardi [7]. It was applied in the context of formal grammars by Rounds [6].

Intuitive interpretation of a grammar as a logical formula. Each category symbolA is regarded
as a binary predicate A(x, y), where the variables x and y range over positions in a string.
Positions in a string w = a1 . . . an, are numbered from 0 to n. A pair of positions (i, j) refers to
a substring ai+1 . . . aj .

Example 7.1. Consider the following ordinary grammar for the Dyck language.

S → SS | aSb | ε

It is expressed as the following definition of a predicate S(x, y) by an iterated first-order formula:
a substring from position x to position y belongs to the Dyck language if and only if one of the
following three conditions holds.

1. The substring from x to y is a concatenation of two substrings from the Dyck language, one
from x to some position z, and the other from z to y:

(∃z)(S(x, z) ∧ S(z, y))

2. The position pointed by x (to be exact, this is position x + 1) contains a symbol a, the
position pointed by y contains b, and the substring between positions x+1 and y−1 belongs
to the Dyck language.

a(x+ 1) ∧ S(x+ 1, y − 1) ∧ y(j)

3. This is an empty substring, which begins and ends in the same position.

x = y

Now, S(x, y) can be defined as a disjunction of these three conditions, which formally transcribe
the logic within the given formal grammar describing this language.

The membership of a string w ∈ {a, b}∗ in the Dyck language is then expressed by the state-
ment S(0, |w|), which may be true or false.

Terms are arithmetical expressions that evaluate to positions.

7



8 A. Okhotin, “Formal grammars” (chapter 7 draft, September 16, 2014)

Definition 7.1. Consider any set of variables. The set of terms over these variables is defined
inductively as follows.

• any variable is an term;

• the symbols begin and end are constant terms referring to the first and the last positions
in the string;

• if t is a term, then so are t+ 1 and t− 1 (increment and decrement operations).

A predicate has finitely many arguments (positions), and is true or false for any given as-
signment of positions to its arguments. Pre-defined predicates for reading symbols of the input
string: a(x), with a ∈ Σ, asserts that the symbol in position x is a. Pre-defined arithmetic
predicates for comparing positions: x < y and x = y. Formulae are constructed from predicates
using conjunction, disjunction and first-order quantification.

Definition 7.2. Let Σ be an alphabet, let N be a finite set of predicate symbols, with each A ∈ N
having a finite rank, denoted by rankA.

• if A ∈ N is a predicate symbol with rankA = k and t1, . . . , tk are terms, then A(t1, . . . , tk)
is a formula (basic predicate);

• if a ∈ Σ is a symbol of the alphabet and t is an term, then ϕ = a(t) is a formula;

• if t and t′ are terms, then t < t′ and t = t′ are formulae (arithmetical predicates);

• if ϕ and ψ are formulae, then so are ϕ ∨ ψ and ϕ ∧ ψ;

• if ϕ is a formula and x is a free variable in ϕ, then (∃x)ϕ and (∀x)ϕ are formulae as well.

(note: one could allow more sophisticated terms and arithmetical predicates)
Recursive definition: each predicate A(x1, . . . , xn) is defined by a formula ϕA(x1, . . . , xn).

Definition 7.3. A first-order grammar is a quintuple G = (Σ, N, rank, 〈ϕA〉A∈N , σ), where

• Σ is a finite alphabet,

• N is a finite set of predicate symbols,

• rank: N → N defines the rank of each predicate symbol,

• each ϕA is a formula with rankA free variables, which defines the predicate A, and

• σ is a formula with no free variables, which defines the condition of being a syntactically
well-formed sentence.

Such a grammar can be written down as a collection of definitions A(x1, . . . , xrankA) =
ϕA(x1, . . . , xrankA), with σ specified separately.

The iterative first-order definition of the Dyck language given in Example 7.1 is presented in
the notation of first-order grammars as follows.

Example 7.2. Consider the first-order grammar G = (Σ, {S}, rank, 〈ϕS〉, σ), where rankS = 2,
and the predicate S is defined as follows.

S(x, y) =
[
(∃z)(S(x, z) ∧ S(z, y))

]
∨ (a(x+ 1) ∧ S(x+ 1, y − 1) ∧ b(y)) ∨ x = y︸ ︷︷ ︸

ϕS

The condition of being a well-formed sentence is stated in the formula σ = S(begin, end). This
grammar defines the Dyck language.
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7.1.1 Definition by equations

The value of a term: evaluates to a position.

Definition 7.1(E). Let w ∈ Σ∗ be a string. Let t be a term using variables x1, . . . , xn, and let
x1 = i1, . . . , xn = in be an assignment of values to variables. Then the value t(i1, . . . , in) of the
term is defined inductively on its structure as follows:

• if t = xj, then t(i1, . . . , in) = ij;

• if t = begin, then t(i1, . . . , in) = 0, and if t = end, then t(i1, . . . , in) = |w|;

• for any term t, define (t − 1)(i1, . . . , in) = t(i1, . . . , in) − 1 if t(i1, . . . , in) > 0; otherwise,
the value of t − 1 is undefined; similarly, define (t + 1)(i1, . . . , in) = t(i1, . . . , in) + 1, as
long as the result is at most |w|.

The truth value of a formula.

Definition 7.2(E). Let Σ be an alphabet, let N be a finite set of predicate symbols, each of a
certain rank. Given a string w ∈ Σ∗, consider the set of all elementary statements on the range
of positions in this string.

Îw = {A(i1, . . . , ik) |A ∈ N, k = rankA, i1, . . . , ik ∈ {0, . . . , |w|}}

Any subset I ⊆ Îw of statements assumed to be true is called an interpretation. Then, for any
formula ϕ(x1, . . . , xn) with n free variables, and for any arguments i1, . . . , in ∈ {0, . . . , |w|}, the
statement ϕ(i1, . . . , in) is said to be true on the string w ∈ Σ∗ under the interpretation I, denoted
by I |=w ϕ(i1, . . . , in), if it satisfies the following inductive definition.

• If ϕ(x1, . . . , xn) = A(t1, . . . , tk), then I |=w ϕ(i1, . . . , in) if
A(t1(i1, . . . , in), . . . , tk(i1, . . . , in)) ∈ I.

• If ϕ(x1, . . . , xn) = a(t), then I |=w ϕ(i1, . . . , in) if the symbol in the position t(i1, . . . , tn)
of the string w is a.

• If ϕ(x1, . . . , xn) = (t < t′), then I |=w ϕ(i1, . . . , in) if the number t(i1, . . . , in) is less than
t′(i1, . . . , in).

• Similarly, if ϕ(x1, . . . , xn) = (t = t′), then I |=w ϕ(i1, . . . , in) if the numbers t(i1, . . . , in)
and t′(i1, . . . , in) are equal.

• If ϕ(x1, . . . , xn) = ψ∨ξ, then I |=w ϕ(i1, . . . , in) if I |=w ψ(i1, . . . , in) or I |=w ξ(i1, . . . , in).

• Similarly, if ϕ(x1, . . . , xn) = ψ ∧ ξ, then I |=w ϕ(i1, . . . , in) if I |=w ψ(i1, . . . , in) and
I |=w ξ(i1, . . . , in).

• If ϕ(x1, . . . , xn) = (∃x)ψ(x1, . . . , xn, x), then I |=w ϕ(i1, . . . , in) if there exists such a
number i ∈ {0, . . . , |w|}, that I |=w ψ(i1, . . . , in, i).

• Similarly, if ϕ(x1, . . . , xn) = (∀x)ψ(x1, . . . , xn, x), then I |=w ϕ(i1, . . . , in) if for every
number i ∈ {0, . . . , |w|}, I |=w ψ(i1, . . . , in, i).

Definition 7.3(E). Let G = (Σ, N, rank, 〈ϕA〉A∈N , σ) be a first-order grammar. Let w ∈ Σ∗ be
a string. An interpretation I ⊆ Îw is called a model, if, for every A ∈ N , A(i1, . . . , irankA) ∈ I
if and only if I |=w ϕA(i1, . . . , irankA). A statement ψ(x1, . . . , xk) is said to be true on a string
w, denoted by |=w ψ(i1, . . . , ik), if I |=w ψ(i1, . . . , ik) for every model I. Then the language
generated by the grammar is L(G) = {w ∈ Σ∗ | |=w σ}.
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There is always a least model.

Lemma 7.1. Let G = (Σ, N, rank, 〈ϕA〉A∈N , σ) be a first-order grammar. For every string
w ∈ Σ∗, define an operator Φ: 2P̂w → 2P̂w mapping an interpretation to an interpretation as

Φ(I) = {A(i1, . . . , irankA) | I |=w ϕA(i1, . . . , irankA)}.

The operator Φ is monotone, in the sense that I ⊆ I ′ implies Φ(I) ⊆ Φ(I ′). Define

Iw =
⋃
`>0

Φ`(∅).

Then Iw is a model. Furthermore, Iw is the least model, in the sense that every model I is a
superset of Iw.

7.1.2 Definition by logical derivation

Definition 7.3(D). Let G = (Σ, N, rank, 〈ϕA〉A∈N , σ) be a first-order grammar. For every string
w ∈ Σ∗, let ϕ(x1, . . . , xn) be a formula, where x1, . . . , xn are its free variables. Then, for every
substitution (x1, . . . , xn) = (i1, . . . , in), there are the following derivation rules.

`w a(t(i1, . . . , in)) (if the symbol in position t(i1, . . . , in) in w is a)

`w (t < t′)(i1, . . . , in) (if t(i1, . . . , in) is less than t′(i1, . . . , in))

`w (t = t′)(i1, . . . , in) (if t(i1, . . . , in) is equal to t′(i1, . . . , in))

ϕA(i1, . . . , irankA) `w A(i1, . . . , irankA)

ϕ,ψ `w ϕ ∧ ψ
ϕ `w ϕ ∨ ψ

ϕ(i1, . . . , ik, i) `w (∃x)ϕ(i1, . . . , ik, x){
ϕ(i1, . . . , ik, i)

}
i∈{0,...,|w|} `w (∀x)ϕ(i1, . . . , ik, x)

Then the language generated by the grammar is L(G) = {w ∈ Σ∗ | `w σ}.

Example 7.2(D). Consider the first-order grammar G = (Σ, {S}, rank, 〈ϕS〉, σ) for the Dyck
language given in Example 7.2. Let w = abaabb be a string.
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`w 1 = 1 (axiom)
1 = 1 `w

[
(∃z)(S(1, z) ∧ S(z, 1))

]
∨
(
a(2) ∧ S(2, 0) ∧ b(1)

)
∨ 1 = 1 (disjunction)[

(∃z)(S(1, z) ∧ S(z, 1))
]
∨
(
a(2) ∧ S(2, 0) ∧ b(1)

)
∨ 1 = 1 `w S(1, 1) (definition of S)

`w a(1) (input)
`w b(2) (input)

a(1), S(1, 1), b(2) `w a(1) ∧ S(1, 1) ∧ b(2) (conjunction)
a(1) ∧ S(1, 1) ∧ b(2) `w

[
(∃z)(S(0, z) ∧ S(z, 2))

]
∨
(
a(1) ∧ S(1, 1) ∧ b(2)

)
∨ 0 = 2 (disjunction)[

(∃z)(S(0, z) ∧ S(z, 2))
]
∨
(
a(1) ∧ S(1, 1) ∧ b(2)

)
∨ 0 = 2 `w S(0, 2) (definition of S)

...
. . . `v S(3, 5) (similarly)

a(3) ∧ S(3, 5) ∧ b(6) `w
[
(∃z)(S(2, z) ∧ S(z, 6))

]
∨
(
a(3) ∧ S(3, 5) ∧ b(6)

)
∨ 2 = 6 (disjunction)[

(∃z)(S(2, z) ∧ S(z, 6))
]
∨
(
a(3) ∧ S(3, 5) ∧ b(6)

)
∨ 2 = 6 `w S(2, 6) (definition of S)

S(0, 2)S(2, 6) `w (S(0, 2) ∧ S(2, 6)) (conjunction)
(S(0, 2) ∧ S(2, 6)) `w (∃z)(S(0, z) ∧ S(z, 6)) (quantification)

(∃z)(S(0, z) ∧ S(z, 6)) `w
[
(∃z)(S(0, z) ∧ S(z, 6))

]
∨
(
a(1) ∧ S(1, 5) ∧ b(6)

)
∨ 0 = 6 (disjunction)[

(∃z)(S(0, z) ∧ S(z, 6))
]
∨
(
a(1) ∧ S(1, 5) ∧ b(6)

)
∨ 0 = 6 `w S(0, 6) (definition of S)

7.1.3 Equivalence of the two definitions

Theorem 7.1. Let G = (Σ, N, rank, 〈ϕA〉A∈N , σ) be a first-order grammar. Then, for every
string w ∈ Σ∗ for every formula ϕ(x1, . . . , xk) and for all positions i1, . . . , ik ∈ {0, 1, . . . , |w|},

`w ϕ(i1, . . . , ik) if and only if |=w ϕ(i1, . . . , ik).

7.4 Decision procedure

Decision procedure for FO(LFP). May be regarded as a parsing algorithm. Actually, many
actual parsing algorithms for various families of grammars are nothing but implementations of
this decision procedure, specialized for the grammar family in question.

7.4.1 Basic algorithm

Theorem 7.2. Let G = (Σ, N, rank, 〈ϕA〉A∈N , σ) be a first-order grammar, let k be the largest
rank of a predicate, let m be the largest number of nested quantifiers in a definition of a predicate.
Then there exists an algorithm, which, given an input string w ∈ Σ∗, determines whether w ∈
L(G), and does so in time O(n2k+m), using space O(nk).

Proof. The algorithm calculates the least model by gradually proving all true elementary state-
ments. There are O(nk) statements in total. At each step, the algorithm cannot know, which
statement it is already able to prove, so it tries proving each of O(nk) statements. Each nested
quantifier requires considering n possibilities for the bounded variables, and thus an attempted
proof of each statement requires O(nm) steps.

For ordinary grammars, as well as for conjunctive grammars, all predicates are binary (k = 2),
quantifiers are used, but never nested (m = 1), which leads to a decision procedure working in
time O(n5) using space O(n2). For tree-adjoining grammars, predicates are of degree k = 4, and



12 A. Okhotin, “Formal grammars” (chapter 7 draft, September 16, 2014)

they use m = 2 nested existential quantifiers, which leads to running time O(n10) using space
O(n4).

If quantifier elimination were applied to a conjunctive grammar, this would lead to ternary
predicates (k = 3) and no quantifiers (m = 0), and the running time would accordingly be
increased to O(n6).
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