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Abstract

In this paper we consider the Target Set Selection problem. The
problem naturally arises in many fields like economy, sociology, medicine.
In the Target Set Selection problem one is given a graph G with
a function thr : V (G) → N ∪ {0} and integers k, `. The goal of the
problem is to activate at most k vertices initially so that at the end of
the activation process there is at least ` activated vertices. The activation
process occurs in the following way: (i) once activated, a vertex stays
activated forever; (ii) vertex v becomes activated if at least thr(v) of its
neighbours are activated. The problem and its different special cases were
extensively studied from approximation and parameterized points of view.
For example, parameterizations by the following parameters were studied:
treewidth, feedback vertex set, diameter, size of target set, vertex cover,
cluster editing number and others.

Despite the extensive study of the problem it is still unknown whether
the problem can be solved in O∗ ((2− ε)n) time for some ε > 0. We par-
tially answer this question by presenting several faster-than-trivial algo-
rithms that work in cases of constant thresholds, constant dual thresholds
or when the threshold value of each vertex is bounded by one-third of its
degree. Also, we show that the problem parameterized by ` is W [1]-hard
even when all thresholds or all dual thresholds are constant.

1 Introduction

In this paper we consider the Target Set Selection problem. In the problem
one is given a graph G with a function thr : V (G) → N ∪ {0} (a threshold
function), and two integers k, `. The question of the problem is to find a vertex
subset S ⊆ V (G) (a target set) such that |S| ≤ k and if we initially activate
S then eventually at least ` vertices of G becomes activated. The activation
process is defined by the following two rules: (i) if a vertex becomes activated it
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stays activated forever; (ii) vertex v becomes activated if either it was activated
initially or at some moment there is at least thr(v) activated vertices in the set
of its neighbours N(v). Often in the literature by Target Set Selection
people refer to the special case of Target Set Selection where ` = V (G),
i.e. where we need to activate all vertices of the graph. We refer to this special
case as Perfect Target Set Selection problem.

Target Set Selection problem naturally arises in such areas as economy,
sociology, medicine. Let us give an example of a scenario [1, 2] under which
Target Set Selection may arise in the marketing area. Often people start
using some product when they find out that some number of their friends are
already using it. Keeping this in mind, it is reasonable to start the following
advertisement campaign of a product: give out the product for free to some
people; these people start using the product, and then some friends of these
people start using the product, then some friends of these friends and so on.
For a given limited budget for the campaign we would like to give out the
product in a way that eventually we get the most users of the product. Or we
may be given the desired number of users of the product and we would like to
find out what initial budget is sufficient. It is easy to see that this situation is
finely modelled by Target Set Selection problem.

The fact that Target Set Selection naturally arises in many different
fields leads to a situation that the problem and its different special cases were
studied under different names: Irreversible k-Conversion Set [3, 4], P3-
Hull Number [5], r-Neighbour Bootstrap Percolation [6], monotone
dynamic monopolies [7], a generalization of Perfect Target Set Selec-
tion on the case of oriented graphs is known as Chain Reaction Closure
and t-Threshold Starting Set [8]. There is an extensive list of results on
Target Set Selection from parameterized and approximation point of view.
Many different parameterizations were studied in the literature such as size of
the target set, treewidth, feedback vertex set, diameter, vertex cover, cluster
editing number and others (for more details, see table 1). Most of these studies
consider the Perfect Target Set Selection problem, i.e. the case where
` = V (G). However, FPT membership results for parameters treewidth [2] and
cliquewidth [9] were given for the general case of Target Set Selection.
From approximation point of view, it is known that the minimization version
(minimize the number of vertices in a target set for a fixed `) of the problem is

very hard and cannot be approximated within O(2log
1−ε n) factor for any ε > 0,

unless NP ⊆ DTIME(npolylog(n)). This inappoximability result holds even for
graphs of constant degree with all thresholds being at most two [10]. Also, the
maximization version of the problem (maximize the number of activated ver-
tices for a fixed k) is NP-hard to approximate within a factor of n1−ε for any
ε > 0 [1].

Taking into account many intractability results for the problem, it is natural
to ask whether we can beat a trivial brute-force algorithm for this problem
or its important subcase Perfect Target Set Selection. In other words,
can we construct an algorithm with running time O∗ ((2− ε)n) for some ε >
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Parameter Thresholds Result Reference

Bandwidth b general O∗
(
bO(b log b)

)
Chopin et al. [11]

Clique Cover
Number c

general NP-hard for c = 2 Chopin et al. [11]

Cliquewidth cw constant O∗
(
(cw · t)O(cw·t)) Hartmann [9]

Cluster Editing
Number ζ

general O∗
(
16ζ
)

Nichterlein et al. [12]

Diameter d general NP-hard for d = 2 Nichterlein et al. [12]
Feedback Edge
Set Number f

general O∗
(
4f
)

Nichterlein et al. [12]

Feedback
Vertex Set
Number

general W [1]-hard Ben-Zwi et al. [2]

Neighborhood
Diversity nd

majority O∗
(

ndO(nd)
)

Dvořák et al. [13]

general W [1]-hard Dvořák et al. [13]
Target Set Size

k
general W [2]-hard Nichterlein et al. [12]

Treewidth w constant O∗
(
tO(w logw)

)
Ben-Zwi et al. [2]

majority W [1]-hard Chopin et al. [11]
Vertex Cover

Number τ
general O∗

(
2(2

τ+1)·τ) Nichterlein et al. [12]

Table 1: Some known results on different parameterizations of Perfect Tar-
get Set Selection. In the Thresholds column we indicate restrictions on the
threshold function under which the results were obtained.

0. Surprisingly, the answer to this question is still unknown. Note that the
questions whether we can beat brute-force naturally arise in computer science
and have significant theoretic importance. Probably, the most important such
question is SETH hypothesis which informally can be stated as:

Hypothesis 1 (SETH). There is no algorithm for SAT with running time
O∗ ((2− ε)n) for any ε > 0.

Another example of such question is the following hypothesis:

Hypothesis 2. [14] For every hereditary graph class Π that can be recognized in
polynomial time, the Maximum Induced Π-Subgraph problem can be solved
in O∗ ((2− ε)n) time for some ε > 0.

There is a significant number of papers [15, 16, 17, 18, 19, 20, 21, 22, 23,
24, 25] with the main motivation to present an algorithm faster than the trivial
one.

As in the stated hypotheses and mentioned papers, our goal is to come up
with an algorithm that works faster than brute-force. We partially answer this
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question by presenting several O∗ ((2− ε)n) running time algorithms for Tar-
get Set Selection when thresholds, i.e. the values of thr(v), are bounded
by some fixed constant and in case when the values of thr(v) − deg(v), so-
called dual thresholds, are bounded by some fixed constant for any v. We think
that this result may be interesting mainly because of the following two rea-
sons. Firstly, the result is established for a well-studied problem with many
applications and hence can reveal some important combinatorial or algorithmic
structure of the problem. Secondly, maybe by resolving the asked question we
could make progress in resolving hypotheses 1, 2.

Our results. In this paper, we establish the following algorithmic results.
Perfect Target Set Selection can be solved in

• O∗ (1.90345n) if all threshold values are at most two;

• O∗ (1.98577n) if all threshold values are at most three;

• O∗ ((2− εd)n) randomized time if for any v ∈ V (G) we have thr(v) ≥
deg(v)− d.

Target Set Selection can be solved in

• O∗ (1.99001n) if for any v ∈ V (G) we have thr(v) ≤ ddeg(v)3 e;

• O∗ ((2− εt)n) if for any v ∈ V (G) we have thr(v) ≤ t.

We also prove the following lower bounds.
Target Set Selection parameterized by ` is W[1]-hard even if

• thr(v) = 2 for any v ∈ V (G);

• thr(v)− deg(v) = 0 for any v ∈ V (G).

2 Preliminaries

2.1 Notation and problem definition

We use standard graph notation. We consider only simple graphs, i.e. undirected
graphs without loops and multiple edges. By V (G) we denote set of vertices of
graph G and by E(G) — the set of its edges. We let n = |V (G)|,m = |E(G)|.
N(v) denote the set of neighbours of vertex v ∈ V (G), and N [v] = N(v) ∪ {v}.
∆(G) = maxv∈V (G) deg(v) denote the maximum degree of G. By G[F ] we
denote the subgraph of G induced by a set of its vertices F . Define by degF (v)
the degree of v in subgraph G[F ].

For a graph G, threshold function thr and X ⊆ V (G) we put S0(X) =
X and for any i > 0 we define Si(X) = Si−1(X) ∪ {v ∈ V (G) : |N(v) ∩
Si−1(X)| ≥ thr(v)}. We say that v becomes activated in the ith round, if v ∈
Si(X) \ Si−1(X), i.e. v is not activated in the (i − 1)th round and is activated
in the ith round. By activation process yielded by X we mean the sequence
S0(X),S1(X), . . . ,Si(X), . . . ,Sn(X). Note that Sn(X) = Sn+1(X) as Si(X) ⊆
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Si+1(X) and n rounds are always enough for the activation process to converge.
By S(X) we denote the set of vertices that eventually become activated, and
we say that X activates S(X) in (G, thr). Thus, S(X) = Sn(X). We call X a
perfect target set of (G, thr), if it activates all vertices of G, i.e. S(X) = V (G).

We recall the definition of Target Set Selection.

Target Set Selection
Input: A graph G with thresholds thr : V (G)→ N ∪ {0},

integers k, `.
Question: Is there a set X ⊂ V (G) such that |X| ≤ k and

|S(X)| ≥ `?

Solution X of Target Set Selection problem (G, thr) we call a target
set.

By Perfect Target Set Selection we understand a special case of
Target Set Selection with ` = n.

In our work we also use the following folklore result.

Lemma 1. For any positive integer n and any α such that 0 < α ≤ 1
2 we have

bαnc∑
i=0

(
n
i

)
≤ 2H(α)n, where H(α) = −α log2(α)− (1− α) log2(1− α).

2.2 Minimal partial vertex covers

Definition 1. Let G be a graph. We call a subset S ⊆ V (G) of its vertices a
T -partial vertex cover of G for some T ⊆ E(G), if the set of edges covered by
vertices in S is exactly T , i.e. T = {uv ∈ E(G) : {u, v} ∩ S 6= ∅}.

We call a T -partial vertex cover S of G a minimal partial vertex cover of G
if there is no T -partial vertex cover S′ of G with S′ ( S. Equivalently, there is
no vertex v ∈ S so that S \ {v} is a T -partial vertex cover of G.

Theorem 1. For any positive integer t, there is a constant ωt < 1 and an
algorithm that, given an n-vertex graph G with ∆(G) < t as input, outputs all
minimal partial vertex covers of G in O∗ (2ωtn) time.

Proof. We present a recursive branching algorithm that lists all minimal partial
vertex covers of G. Pseudocode of the algorithm is presented in figure 1. As
input algorithm takes three sets F,A,Z such that F t A t Z = V (G). The
purpose of the algorithm is to enumerate all minimal partial vertex covers that
contain A as a subset and do not intersect with Z. So the algorithm outputs all
minimal partial vertex covers S of G satisfying S ∩ (A t Z) = A. It easy to see
that then minimal pvcs(G,V (G), ∅, ∅) enumerates all minimal partial vertex
covers of G.

The algorithm uses only the following branching rule. If there is a vertex
v ∈ F such that N(v) ⊆ F then consider 2|N [v]| − 1 branches. In each branch,
take some R ( N [v] and run minimal pvcs(G,F \N [v], AtR,Z t (N [v] \R)).
In other words, we branch on which vertices in N [v] belong to minimal partial
vertex cover and which do not. Note that if S is a minimal partial vertex
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Algorithm: minimal pvcs(G,F,A,Z)

Input: Graph G with ∆(G) < t, vertex subsets F,A,Z such that
F tA t Z = V (G).

Output: All minimal partial vertex covers S of G such that
S ∩ (A t Z) = A.

if ∃v : N [v] ⊆ F then
foreach R ( N [v] do

minimal pvcs(G,F \N [v], A tR,Z t (N [v] \R))

else
foreach R ⊆ F do

if A tR is a minimal partial vertex cover of G then
output A tR

Figure 1: Algorithm enumerating all minimal partial vertex covers of a graph.

cover then it cannot contain N [v], since otherwise S \ {v} is its proper subset
and covers the same edges. Hence, above branching consider all possible cases.
Since ∆(G) < t, the worst branching factor is (2t − 1)

1
t .

If the branching rule cannot be applied then we brute-force all possible
variants of the intersection of minimal partial vertex cover S and F . So we
consider all 2|F | variants of S∩F , and filter out variants that do not correspond
to a minimal partial vertex cover. Minimality of a partial vertex cover can be
checked in polynomial time, so filtering out adds only a polynomial factor.

Note that we run brute-force only if any vertex in F has at least one neigh-
bour in AtZ, in other words, AtZ is a dominating set of G. Since ∆(G) < t,

any dominating set of G consists of at least n
t vertices. Hence, |F | ≤ (t−1)n

t .
This leads to the following upper bound on the running time of the algorithm:((

2t − 1
) 1
t

)n
t

· 2
(t−1)n

t · nO(1).

Hence, we can put ωt = 1
t2 log (2t − 1) + t−1

t < 1.

3 Algorithms for bounded thresholds

3.1 Algorithm for thresholds bounded by fixed constant

In this subsection we prove the following theorem.

Theorem 2. Let t be fixed constant. For Target Set Selection with all
thresholds bounded by t there is a O∗ ((2− εt)n)-time algorithm, where εt is a
positive constant that depends only on t.
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Our algorithm consists of three main stages. In the first stage we apply some
simple reduction and branching rules. If the instance becomes small enough
we then apply brute-force and solve the problem. Otherwise, we move to the
second stage of the algorithm. In the second stage we perform branching rules
that help us describe the activation process. After that we move to the third
stage in which we run special dynamic program that finally solves the problem
for each branch. Let us start description of the algorithm.

3.1.1 Stage I

In the first stage our algorithm applies some branching rules. In each branch
we maintain the following partition of V (G) into three parts A,Z, F . These
parts have the following meaning: A is a set of vertices which are known to be
in our target set, Z — vertices which are known to be not in the target set, F
— the set of all other vertices (i.e. vertices about which we do not know any
information so far). At the beginning, we have A = Z = ∅ and F = V (G).

We start the first stage with exhaustive application of reduction rule 1 and
branching rule 1:

Reduction rule 1. If there is any vertex v ∈ S(A), but v /∈ A tZ then assign
v to Z.

Reduction rule 1 is correct as there is no need to put a vertex in a target set
if it will become activated eventually by the influence of its neighbours.

Branching rule 1. If there is a vertex v ∈ F such that degF (v) ≥ thr(v) then
arbitrarily choose a subset T ⊆ N(v) such that |T | = thr(v) and branch on the
following branches:

1. For each subset of vertices S ⊆ T ∪ {v} of size less than thr(v) consider
a branch in which we put S into A and we put other vertices T ∪ {v} \ S
into Z;

2. Additionally consider the branch in which we assign all vertices from T to
A and v is assigned to Z.

It is enough to consider only above mentioned branches. All other possible
branches assign at least thr(v) vertices from T ∪ {v} to A, and we always can
replace such branch with the branch assigning T to A since it leads to the
activation of all vertices in T ∪ {v} and adds at most the same number of
vertices into a target set.

Branching rule 2. If |F | ≤ γn, where γ is a constant to be chosen later, then
simply brute-force over all possibilities of how vertices in F should be assigned
to A and Z.

If branching rule 2 is applied in all branches then the running time of

the whole algorithm is at most 2γn(2t+1 − t − 1)
(1−γ)n
t+1 (here and later t =

maxv∈V (G) thr(v)) and we do not need to use stages II and III, as the problem
is already solved in this case.
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3.1.2 Stage II

After exhaustive application of reduction rule 1 and branching rules 1 and 2, in
each branch we have the following properties:

1. ∆(G[F ]) < t;

2. |F | > γn;

3. S(A) ⊆ A t Z.

Now, in order to solve the problem it is left to identify the vertices of a target
set that belong to F . It is too expensive to brute-force over all 2|F | subsets of F
as F is too big. Instead of this direct approach (brute-force over all subsets of
F ) we consider several sub-branches. In each such branch we almost completely
describe the activation process of the graph. For each branch, knowing this
information about the activation process, we find an appropriate target set by
solving a special dynamic program in stage III.

Let X be an answer (a target set). X can be expressed as X = A t B
where B ⊆ F . At the beginning of the activation process only vertices in
S0(X) = X = A t B are activated, after the first round vertices in S1(A t B)
are activated, and so on. It is clear that S(AtB) = Sn(AtB). Unfortunately,
we cannot compute the sequence of Si(AtB) as we do not know B. Instead we
compute the sequence P0, P1, . . . , Pn such that Pi\B = Si(X)\B and Pi ⊆ Pi+1

for any i.
First of all, using Theorem 1 we list all minimal partial vertex covers of the

graph G[F ]. For each minimal partial vertex cover C we create a branch that
indicates that C ⊆ B and, moreover, C covers exactly the same edges in G[F ]
as B does. In other words, any edge in G[F ] has at least one endpoint in B
if and only if it has at least one endpoint in C. Note that such C exists for
any B, just take C as a minimal T -partial vertex cover when B is a T -partial
vertex cover. One can obtain C by removing vertices from B one by one while
it remains a T -partial vertex cover. When no vertex can be removed, then, by
definition, the vertices left form a minimal T -partial vertex cover.

Put P0 = AtC. It is correct since S0(X)\B = A = P0\B. We now show how
to find Pi+1 having Pi. Recall that to do such transition from Si(X) to Si+1(X)
it is enough to find vertices with the number of neighbours in Si(X) being at
least the threshold value of that vertex. As for Pi and Pi+1, it is sufficient to
check that the number of activated neighbours has reached the threshold only
for vertices that are not in B. Thus any transition from Pi to Pi+1 can be done
by using a procedure that, given Pi and any vertex v /∈ Pi, checks whether v
becomes activated in the i+ 1th round or not, under the assumption that v /∈ B.

Given Pi it is not always possible to find a unique Pi+1 as we do not know B.
That is why in such cases we create several sub-branches that indicate potential
values of Pi+1.

Let us now show how to, for each vertex v /∈ Pi, figure out whether v is in
Pi+1 (see pseudocode in figure 2).
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If |N(v)∩Pi| ≥ thr(v) then we simply include v in Pi+1. We claim that this
check is enough if v ∈ F .

Claim 1. If v ∈ F \B, then v becomes activated in the ith round if and only if
|N(v) ∩ Pi| ≥ thr(v).

We show that by proving that Si(X)∩N(v) = Pi∩N(v). Note that Si(X)\
B = Pi \B by definition of Pi. It is enough to prove that Si(X) ∩N(v) ∩B =
N(v) ∩ B = Pi ∩ N(v) ∩ B. Since v /∈ B, for any uv ∈ E(G[F ]), uv covered
by B is equivalent to u ∈ B. C covers the same edges in G[F ] as B does, and
also v /∈ C, hence C ∩N(v) = B ∩N(v). Using this and C ⊆ P0 ⊆ Pi, we get
Pi ∩B ∩N(v) = Pi ∩C ∩N(v) = C ∩N(v) = B ∩N(v). If v ∈ B, the decision
for v does not matter. Thus if v ∈ F and |N(v) ∩ Pi| < thr(v), we may simply
not include v in Pi+1.

If v ∈ Z at this point, we cannot compute the number of activated neighbours
of v exactly as we do not know what neighbours of v are in B. Note that we do
not need the exact number of such neighbours if we know that this value is at
least thr(v). Thus we branch into thr(v) + 1 sub-branches corresponding to the
value of min{|N(v) ∩B|, thr(v)}, from now on we denote this value as dg(v).

On the other hand, we know all activated neighbours of v that are in V (G)\F
since Si(X)∩ (V (G)\F ) = Pi∩ (V (G)\F ), as B ⊆ F . Let this number be m =
|N(v)∩(Pi\F )|. So the number of activated neighbours of v is at least m+dg(v).
Also there may be some activated neighbours of v in N(v)∩Pi∩F . However, we
cannot simply add |N(v)∩ Pi ∩ F | to m+ dg(v) since vertices in Pi ∩B will be
computed twice. So we are actually interested in the value of |(N(v)∩Pi∩F )\B|.
That is why for vertices from N(v)∩Pi ∩F we simply branch whether they are
in B or not. After that we compare m + dg(v) + |(N(v) ∩ Pi ∩ F ) \ B| with
thr(v) and figure out whether v becomes activated in the current round or not.

Note that once we branch on the value of min{|N(v) ∩ B|, thr(v)} or on
whether v ∈ B or not for some v, we will not branch on the same value or
make a decision for the same vertex again as it makes no sense. Once fixed, the
decision should not change along the whole branch and all of its sub-branches,
otherwise the information about B would just become inconsistent.

Let us now bound the number of branches created. There are three types of
branchings in our algorithm:

1. Branching on the value of the minimal partial vertex cover C. By Theo-
rem 1 there is at most O∗

(
2ωt|F |

)
such branches.

2. Branching on the value of dg(v) = min{|N(v) ∩ B|, thr(v)} with v ∈
Z. There is at most (t + 1)|Z| such possibilities since t ≥ min{|N(v) ∩
B|, thr(v)} ≥ 0.

3. Branching on whether vertex u is in B or not. We perform this branching
only for vertices in the set N(v) ∩ Pi ∩ F with v ∈ Z only when its size
is strictly smaller than thr(v) ≤ t. Hence we perform a branching of this
type on at most (t− 1)|Z| vertices.
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Hence, the total number of the branchings made, i.e. branches created, in
stage II is at most O∗

(
2ωt|F | · (t+ 1)|Z| · 2(t−1)|Z|

)
.

Algorithm: is activated(G, thr, A, Z, F, Pi, v)

Input: G, thr, A, Z, F as usual, Pi such that Pi \B = Si(A tB) \B for
some B, and a vertex v /∈ Pi.

Output: True, if v /∈ B and v ∈ Si+1(A tB);
False, if v /∈ B and v /∈ Si+1(A tB);
any answer, otherwise.

if |N(v) ∩ Pi| ≥ thr(v) then
return True

else if v ∈ F then
return False

m←− |N(v) ∩ (Pi \ F )|
branch on the value of dg(v) = min {|N(v) ∩B|, thr(v)}
m←− m+ dg(v)
foreach u ∈ Pi ∩N(v) ∩ F do

branch on whether u ∈ B
if u /∈ B then

m←− m+ 1

return m ≥ thr(v)

Figure 2: Procedure determining whether a vertex becomes activated in the
current round.

3.1.3 Stage III

Now, for each branch our goal is to find the smallest set X which activates at
least ` vertices and agrees with all information obtained during branching in a
particular branch. That is,

• A ⊆ X,Z ∩X = ∅ (branchings made in stage I);

• C ⊆ X (branching of the first type in stage II);

• information about min{|N(v) ∩ B|, thr(v)} (second type branchings in
stage II);

• additional information whether certain vertices belong to X or not (third
type branchings in stage II).

From now on we assume that we are considering some particular branching
leaf. Let A′ be the set of vertices that are known to be in X for a given branch
and Z ′ be the set of vertices known to be not in X (note that A ⊆ A′ and
Z ⊆ Z ′). Let Z = {v1, v2, . . . , vz} and F ′ = V (G) \ A′ \ Z ′ = {u1, u2, . . . , uf ′}.
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So actually it is left to find B′ ⊆ F ′ (in these new terms, B = (A′ \ A) t B′)
such that |A′ tB′| ≤ k, |P ∪A′ ∪B′| ≥ ` and for each i ∈ {1, 2, . . . , z} the value
min{thr(vi), |N(vi) ∩B|} equals dg(vi).

In order to solve the obtained problem we employ dynamic programming.
We create a table TS of size f ′ × `× (t+ 1)z. TS(i, p, d1, d2, . . . , dz) stores the
smallest set B′2 ⊆ {ui+1, ui+2, . . . , uf ′} such that |S(A′ t B′1 t B′2)| ≥ `, where
B′1 is any subset of {u1, u2, . . . ui} such that |(B′1 ∪ P ) ∩ {u1, u2, . . . , ui}| = p
(i.e. AtB′1tB′2 activates exactly p vertices in {u1, u2, . . . , ui}, since S(AtB′1t
B′2)∩{u1, u2, . . . , ui} ⊆ B′1∪P ), and min{thr(vj), |N(vj)∩((A′\A)tB′1)|} = dj
for any j. In other words, TS(i, p, d1, d2, . . . , dz) stores one of the optimal ways
of how the remaining f ′ − i vertices in F ′ should be chosen into B′ if the first
i vertices in F ′ was chosen correspondingly to the values of p and dj . One can
easily show that the choice of B′2 depends only on values i, p, d1, d2, . . . , dz.

Note that for some values in the TS table there is no appropriate value
(there is no solution). In such cases, we put the corresponding element to be
equal to V (G). It is a legitimate operation since we are solving a minimization
problem. Note that the desired value of B′ will be stored as

TS(0, 0,min{|N(v1) ∩ (A′ \A)|, thr(v1)}, . . . ,min{|N(vz) ∩ (A′ \A)|, thr(vz)}).

We assign TS(f ′, p, dg(v1), dg(v2), . . . dg(vz)) = ∅ for any p with p + |P
∩(V (G) \ F ′)| ≥ ` since it corresponds to that all vertices in F ′ were cho-
sen so that they activate at least ` vertices and all dg constraints are sat-
isfied. In all other fields of type TS(f ′, ·, · · · , ·) we put the value of V (G).
We now show how to evaluate values TS(i, p, d1, d2, . . . , dz) for any i with
f ′ − 1 ≥ i ≥ 0. We can evaluate any TS(i, ·, ·, . . . , ·) if we have all TS(i +
1, ·, ·, . . . , ·) evaluated, in polynomial time. For each j ∈ {1, 2, . . . , z}, let di+1

j =
min {thr(vj), dj + |N(vj) ∩ {ui+1}|}. In order to compute TS(i, p, d1, d2, . . . , dz)
we need to decide whether ui+1 is in a target set or not. If ui+1 is taken into B′

then dj becomes equal to di+1
j for each j, if it is not, none of dj should change.

Hence,

TS(i, p, 〈dj〉) = min
[
TS(i+ 1, p+ 1, 〈di+1

j 〉) ∪ {ui+1},
TS(i+ 1, p+ |P ∩ {ui+1}|, 〈dj〉)] . (1)

Since 0 ≤ dj ≤ dg(vj) for any j, the TS table has O∗
(
(t+ 1)|Z|

)
fields.

Each of the fields of the table is evaluated in polynomial time, so the desired
B′, hence B, is found in O∗

(
(t+ 1)|Z|

)
time for any branch fixed in stage II.

Thus in stages II and III the algorithm solves the problem for any appropriate
branch fixed in stage I, and these two stages together take

2ωt|F | · (t+ 1)|Z| · 2(t−1)|Z| · (t+ 1)|Z| · nO(1)

running time.
Actually, the (t + 1)2|Z| multiplier in the upper bound can be improved.

Recall that it corresponds to the number of possible variants of dg(vj) and the
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number of possible variants of dj , each single of that can be presented in t+ 1
variants. Recall that 0 ≤ dj ≤ dg(vj) ≤ t, in other words, after each of dg(vj) is
fixed in stage II, each of dj can be presented in dg(vj) + 1 variants in stage III.
That leads to an observation that each of the pairs (dj , dg(vj)) can be presented
only in

(
t+2
2

)
variants. This gives an improvement of the (t + 1)2|Z| multiplier

to a
(
t+2
2

)|Z|
multiplier. Hence, the upper bound on the running time in stages

II and III becomes O∗
(

2ωt|F | ·
(
t+2
2

)|Z| · 2(t−1)|Z|).

We rewrite this upper bound in terms of n and |F |. Since |Z| ≤ n− |F |, the
upper bound becomes

2ωt|F | ·
(
t+ 2

2

)n−|F |
· 2(t−1)(n−|F |) · nO(1).

Now we are ready to choose γ. We set the value of γ so that computation in
each branch created at the end of stage I takes at most O∗ (2γn) time. Note that
the upper bound on the running time required for stages II and III increases
when the value of |F | decreases. So we can find γ as the solution of equation

2γn = 2ωtγn ·
(
t+2
2

)(1−γ)n ·2(t−1)(1−γ)n. Hence, γ =
(t−1)+log2 (t+2

2 )
(t−ωt)+log2 (t+2

2 )
< 1, as ωt <

1. So the overall running time is

2γn(2t+1 − t− 1)
(1−γ)n
t+1 · nO(1),

which is O∗ ((2− εt)n) for some εt > 0 since γ < 1.

3.2 Two algorithms for constant thresholds in the perfect
case

Theorem 3. Perfect Target Set Selection with thresholds equal to two
can be solved in O∗ (1.90345n) time.

Proof. Let (G, thr) be a graph with thresholds, with |V (G)| = n and all thresh-
olds equal to two. For this case, we present an algorithm with O∗ (1.90345n)
running time that finds a perfect target set of (G, thr) of minimum possible size.

We set γ = 0.655984. The algorithm consists of two parts. In the first
part, the algorithm brute-forces over all possible subsets X ⊆ V (G) of size at
most (1 − γ)n, in ascending order of their size. If the algorithm meets X that
is a perfect target set, i.e. S(X) = V (G), then it outputs the set and stops.
Otherwise, the algorithm runs its second part.

The second part of the algorithm is a recursive branching algorithm that
maintains sets A,Z, F similarly to the algorithm in section 3.1. The branching
algorithm consists of two reduction and two branching rules. Here, we reuse
reduction rule 1 and branching rule 1 from the previous section. Additionally,
we introduce the following rules.

Reduction rule 2. If there is a vertex v ∈ F with degG(v) < 2, assign v to A.

12



Reduction rule 2 is correct since such vertex cannot be activated other than
being put in a target set.

Branching rule 3. If there are two vertices u, v ∈ F with uv ∈ E(G) and
degG(u) = degG(v) = 2, then consider three branches:

• u ∈ Z, v ∈ A;

• u ∈ A, v ∈ Z;

• u, v ∈ A.

Branching rule 3 is correct since if none of u, v is in a target set, none of
them will eventually have two activated neighbours and thus the target set is
not perfect.

If none of the rules can be applied, the algorithm brute-forces all 2|F | pos-
sibilities of how vertices in F should be assigned to A and Z. This finishes the
description of the second part and the whole algorithm. We now give a bound
on its running time.

By Lemma 1, the first part of the algorithm runs in O∗
(
2H(1−γ)n) =

O∗ (1.90345n) time. If the algorithm does not stop in this part, then any per-
fect target set of G consists of at least (1− γ)n vertices and the second part is
performed.

Branching rules 1 and 3 give branching vectors (3, 3, 3, 3, 3) (five variants are
considered for three vertices) and (2, 2, 2) (three variants are considered for two
vertices) respectively, and the second vector gives bigger exponential branching
factor equal to

√
3.

Observe that if branching rules 1, 3 and reduction rules 1, 2 cannot be
applied, then A t Z is in fact a perfect target set of G. Indeed, in that case
G[F ] consists only of isolated vertices and isolated edges, as if there was a vertex
v ∈ F with degF (v) ≥ 2, branching rule 1 would be applied. Note that if some
vertex v ∈ F is isolated in G[F ], then it has at least deg(v) ≥ thr(v) = 2
neighbours in A t Z, hence it becomes activated in the first round. Consider
an isolated edge uv ∈ G[F ]. Note that u and v cannot simultaneously have
degree two in G, since branching rule 3 excludes this case. It means that either
u or v has degree at least three and thus has at least two neighbours in A t Z.
Hence, it becomes activated in the first round. Since the other vertex has at
least one neighbour in A t Z, at the end of the first round it will have at least
two activated neighbours, thus it becomes activated no later than the second
round.

We conclude that if we need to brute-force over 2|F | variants, then AtZ is a
perfect target set of G. Hence, |AtZ| ≥ (1− γ)n and |F | ≤ γn. It follows that

the second part running time is at most
√

3
(1−γ)n

2γn·nO(1) = O∗ (1.90345n). So,

the running time of the whole algorithm is max{2H(1−γ)n · nO(1),
√

3
(1−γ)n

2γn ·
nO(1)} = O∗ (1.90345n).

Theorem 4. Perfect Target Set Selection with thresholds equal to three
can be solved in O∗ (1.98577n) time.
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Proof. Here, we adapt the algorithm working for thresholds equal to two to the
case when all thresholds equal three. Let γ = 0.839533. At first, algorithm
brute-forces over all subsets of size at most (1 − 2

3γ)n and stops if it finds a
perfect target set among them. If the algorithm has not found a perfect target
set on this step then we run a special branching algorithm.

As with thresholds equal to two we use branching rules 1, 3 and reduction
rules 1, 2. The only difference is that now in reduction rule 2 and in branching
rule 3 we use constant 3 instead of 2. We also introduce a new branching rule
for this algorithm.

Branching rule 4. Let v ∈ F , u,w ∈ N(v) ∩ F and degG(v) = 4,degG(u) =
degG(w) = 3. Consider all branches that split u, v, w between A and Z and
assign at least one vertex to A.

The rule is correct as we omit only one branch that put all three vertices
u, v, w into Z. Note that if none of the vertices u, v, w is activated initially then
none of them will become activated. Hence, this branch cannot generate any
perfect target set.

We apply the above-stated rules exhaustively. When none of the rules can
be applied we simply brute-force over all possible subsets of F . That is the
whole algorithm. Now, it is left to bound the running time of the algorithm.

The first part runs in O∗
(

2H(1− 2
3γ)n

)
= O∗ (1.98577n) time. If the algo-

rithm does not stop after the first part then any perfect target set of G contains
at least (1− 2

3γ)n vertices. Branching rules 1, 3, 4 give the following branching

factors respectively: 12
1
4 (since 12 variants are considered for 4 vertices), 3

1
2 (3

variants for 2 vertices) and 7
1
3 (7 variants for 3 vertices). The biggest branching

factor among them is 7
1
3 .

Now, we bound the size of F after exhaustive application of all rules.

Lemma 2. After exhaustive application of all rules F consists of at most γn
vertices.

Proof. Consider values of A, Z, F when none of the branching rules can be
applied. In this case we have that ∆(G[F ]) < 3.

Note that our graph does not contain perfect target sets of size at most
(1 − 2

3γ)n. Otherwise algorithm would have finished working on the first step
when it was brute-forcing over all subsets of size at most (1 − 2

3γ)n. Now, we
start constructing a new perfect target set P based on that the rules cannot be
applied to A,F, Z. Then, from the fact that |P | > (1 − 2

3γ)n, we obtain that
|F | ≤ γn.

Put A t Z into a new perfect target set P . Let us show that degrees of
vertices in the set F ′ = F \ S(A t Z) can only be three or four. If v ∈ F and
degG(v) ≥ 5, then v has at most two neighbours in F . Hence, it has at least
three neighbours in A t Z and so v is in S(A t Z).

Since ∆(G[F ]) < 3, ∆(G[F ′]) < 3 also. Hence, any vertex v ∈ F ′ with
degG(v) = 4 requires one more activated neighbour to become activated. Also,
G[F ′] consists only of isolated paths and cycles. Consider any isolated path in
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G[F ′]. Observe that any of its endpoints cannot have degree four in G, since
otherwise it would have at least three neighbours in S(A t Z) and would be
activated. Hence, all endpoints of all isolated paths are vertices of degree three.
Note that any endpoint has two activated neighbours. Since branching rule 2
cannot be applied, any two endpoints cannot be adjacent. Thus any isolated
path in G[F ′] consists of at least three vertices.

It means that the vertices that require two more activated neighbours to
become activated are vertices of degree three that are not endpoints in any
isolated path in G[F ′]. Note that if u, v ∈ F ′ with degG(u) = degG(v) = 3
and u, v lie in the same isolated path or cycle Q in G[F ′], then there is at least
two vertices of degree four in Q between u and v, or otherwise one of branching
rules 3 or 4 would be applied. Thus in any isolated path or cycle Q in G[F ′]
the number of vertices that require at least two activated neighbours to become
activated constitute at most one-third of the length of Q. We put all such
vertices in the set P . There may be isolated paths or cycles left in G[F ′] from
which we have not put any vertex into P . For each such path or cycle we choose
an arbitrary vertex from it and put it into P . Note that from each isolated
path or cycle in G[F ′] we put no more than one-third of its vertices into P .
Construction of P is finished.

From each isolated cycle or path we picked at least one vertex into P and
vertices that left require only one activated neighbour to become activated.
Hence, P activates the whole graph. The size of P is at most |AtZ|+ 1

3 |F
′| ≤

n − |F | + 1
3 |F | = n − 2

3 |F |. It means that n − 2
3 |F | ≥ (1 − 2

3γ)n. Hence, we
proved |F | ≤ γn.

Using this lemma, we can bound the running time of the second part. The
largest branching factor in the rules is 7

1
3 . Hence, the running time is at most

7
1
3 (1−γ)n2γn ·nO(1). Combining it with the running time of the first part we get

that the overall running time is O∗ (1.98577n).

3.3 Algorithm for thresholds bounded by one-third of de-
grees

Theorem 5. Let G be a connected graph with at least three vertices. Assume

that thr(v) ≤ ddeg(v)3 e for any v ∈ V (G). Then there is a perfect target set of
(G, thr) of size at most 0.45|V (G)|.

Proof. We prove this fact by induction on the number of vertices n in G.
If G is connected and |V (G)| = 3 then any single vertex in G forms a perfect

target set. This is true since ∆(G) ≤ 2 and thus the threshold value of any
vertex of G does not exceed 1.

From now on G is a connected graph on n vertices with n > 3. Let n1 be
the number of vertices in G of degree one and n≥2 be the number of vertices in
G of degree at least two, n1 + n≥2 = n.

If n1 > n≥2, then there exist vertices v, u1, u2 ∈ V (G) such that vu1, vu2 ∈
E(G), deg(u1) = deg(u2) = 1. Let ρ(G, thr) be the size of minimum perfect
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target set of (G, thr). Then ρ(G, thr) ≤ 1 + ρ(G′, thr′), where G′ = G \ v
and thr′(u) = thr(u) − |N(u) ∩ {v}| for any u ∈ V (G′). Note that thr′(u) ≤
ddegG′ (u)3 e.

Let G′ consist of k connected components C1, C2, . . . , Ck, where k ≥ 3,
C1 = {u1}, C2 = {u2} and |Ci| ≤ |Ci+1| for any i ∈ {1, 2, . . . , k − 1}. Then

ρ(G′, thr′) =
k∑
i=1

ρ(G′[Ci], thr′). Observe that if |Ci| ≤ 2, then ρ(G′[Ci], thr′) =

0. Indeed, if Ci = {u}, then thr′(u) ≤ degG′(u) = 0, and u becomes activated
in the first round. If Ci = {u,w}, then either uv ∈ E(G) or vw ∈ E(G),
without loss of generality, say that uv ∈ E(G). Also, degG(u),degG(w) ≤ 2,
thus thr(u) and thr(w) are not greater than one. Since uv ∈ E(G), we have
that thr′(u) = thr(u)−1 ≤ 0. Thus u becomes activated in the first round, and,
as thr′(w) ≤ thr(w) ≤ 1, then w becomes activated no later than the second
round. If |Ci| ≥ 3, then, by induction, ρ(G′[Ci], thr′) ≤ 0.45|Ci|.

Hence, ρ(G′, thr′) ≤
k∑

i=m+1

ρ(G′[Ci], thr′) ≤ 0.45
k∑

i=m+1

|Ci|, where m is

such that |Cm| ≤ 2 and |Cm+1| ≥ 3. Since m ≥ 2, we have ρ(G′, thr′) ≤
0.45(|V (G′)| − 2). This implies that ρ(G, thr) ≤ 1 + 0.45(|V (G′)| − 2) =
1 + 0.45(|V (G)| − 1− 2) < 0.45|V (G)|.

To handle the case n1 ≤ n≥2 (equivalent to 2n1 ≤ n) we use a combinatorial
model proposed by Ackerman et al. in [26]. For each permutation σ of vertices
V (G) we construct a perfect target set in the following way. We put vertex v
into the perfect target set if the number of neighbours to the left of v in the
permutation σ is less than thr(v). It is easy to see that after such construction
we get a perfect target set Pσ, as vertices will become activated from the left
to the right. If we take a random permutation σ among all permutations then

probability that a particular vertex v ends up in Pσ equals max{0,thr(v)}
deg(v)+1 . Since

thr(v) ≤ ddeg(v)3 e, for a vertex of degree one the probability is bounded by 1
2 ,

for a vertex of degree two — by 1
3 , for a vertex of degree three — by 1

4 , for a
vertex of degree four — by 2

5 , etc. Observe that the highest probability bounds
are for vertices of degree one and four, thus the expected value of the perfect
target set size of (G′, thr′) is bounded by

1

2
n1 +

2

5
n≥2 =

1

2
n1 +

2

5
(n− n1) =

2

5
n+

1

10
n1 ≤

2

5
n+

1

10
· 1

2
n =

9

20
n.

Hence, there is at least one perfect target set of (G, thr) of size at most 0.45n.

Corollary 1. Target Set Selection with thresholds bounded by one-third
of degree rounded up can be solved in O∗ (1.99001n) time.

Proof. Let (G, thr) and k, ` be an instance of Target Set Selection with

|V (G)| = n and thr(v) ≤ ddeg(v)3 e for any v ∈ V (G). We are looking for
X ⊆ V (G) with |X| ≤ k and |S(X)| ≥ `.

Consider subgraph G′ of G consisting of all connected components of G of
size at least three. By Theorem 5, (G′, thr) has a perfect target set of size at most
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0.45|V (G′)| ≤ 0.45n, hence it is enough to consider such X that |X ∩ V (G′)| ≤
0.45n. We brute-force over all such variants of |X ∩ V (G′)|. By Lemma 1, it
takes O∗

(
2H(0.45)n

)
= O∗ (1.99001n) time.

When |X ∩ V (G′)| is fixed, it is left to consider connected components of
G of size less than three. Note that if we already have |X ∩ V (G′)| ≤ k and
|S(X ∩ V (G′))| ≥ `, we may set X = X ∩ V (G′) and stop. Otherwise, we
should consider adding vertices from connected components of size one or two
to X. Adding a vertex from a connected component of size one, i.e. isolated
vertex, increases the number of activated vertices by one, and adding a vertex
from a component of size two increases this number by two. Thus we greedily
assign a single vertex from each component of size two to X, but no more than
k− |X ∩V (G′)| in total. If after that the size of X is still less than k, we assign
as many isolated vertices of G to X as we can. Then we finally check whether
|S(X)| ≥ `.

The greedy part of the algorithm runs in polynomial time for each variant
of |X ∩ V (G′)|. Hence, the whole algorithm runs in O∗ (1.99001n) time.

4 Algorithm for bounded dual thresholds

Let (G, thr) be a graph with thresholds. By dual threshold of vertex v ∈ V (G)
we understand the value thr(v) = deg(v)− thr(v). In terms of dual thresholds,
v becomes activated if it has at most thr(v) not activated neighbours. For
bounded dual thresholds we prove the following theorem.

Theorem 6. For any non-negative integer d, Perfect Target Set Selec-
tion with dual thresholds bounded by d can be solved in (2 − εd)n · nO(1) ran-
domized time for some εd > 0.

Proof. In terms of dual thresholds, we can consider the activation process as
a vertex deletion process, where activated vertices are deleted from the graph.
With this consideration, activation process goes in the following way. Firstly,
the target set is deleted from the graph. Then, in each consecutive round, a
vertex v is deleted from the remaining graph if it has at most thr(v) neighbours
remaining. When the process converges, vertices in the remaining graph are the
vertices that are not activated. Thus the target set is perfect if and only if the
remaining graph is empty.

If thr(v) = d for each v ∈ V (G). Then, a vertex is deleted from the remaining
graph if it has at most d neighbours remaining. By definition of d-degeneracy, a
graph becomes empty after such process if and only if it is d-degenerate. Thus,
a target set X is perfect if and only if G \X is d-degenerate. Hence, if all dual
thresholds are equal to d, finding a maximum d-degenerate induced subgraph
of G is equivalent to finding a minimum perfect target set of G.

In [16], Pilipczuk and Pilipczuk present an algorithm that solves Maximum
Induced d-Degenerate Subgraph problem in randomized (2 − εd)n · nO(1)

time for some εd > 0 for any fixed d. Hence, instances of Perfect Target Set
Selection where all dual thresholds are equal to d can be solved in the same
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running time. Furthermore, one can show that this algorithm can be adjusted
to work when all dual thresholds are not necessarily equal, but do not exceed
d.

5 Lower bounds

5.1 ETH lower bound

First of all we show a 2o(n+m) lower bound for Perfect Target Set Se-
lection. We have not found any source that claims this result. Thus, for
completeness, we state it here. The result follows from the reduction given by
Centeno et al. in [3]. They showed a linear reduction from a special case of
3-SAT, where each variable appears at most three times, to Perfect Target
Set Selection where thresholds are equal to two. Note that in their work
they refer to the problem as IRR2-Conversion Set.

Theorem 7. Perfect Target Set Selection cannot be solved in 2o(n+m)

time unless ETH fails.

Proof. 3-Bounded-3-SAT is a version of 3-SAT with a restriction that each
variable appears at most three times in a formula. It is a well-known fact that
an instance of 3-SAT with n variables and m clauses can be transformed into
an instance of 3-Bounded-3-SAT with O(m) variables and O(m) clauses, in
polynomial time. Then, according to the Exponential-Time Hypothesis with
Sparsification Lemma, it follows that 3-Bounded-3-SAT cannot be solved in
2o(n+m) time.

In Theorem 2 in [3] Centeno et al. have shown how to reduce an instance
of 3-Bounded-3-SAT to an instance of PTSS with thresholds equal to two
in polynomial time. In this reduction, the number of vertices and edges of
a resulting graph remain linear over the length of an initial formula. In other
words, an instance of 3-Bounded-3-SAT withO(n) variables andO(m) clauses
can be reduced to an instance of PTSS with O(n+m) vertices and thresholds
equal to two in polynomial time. This implies that PTSS cannot be solved in
O∗
(
2o(n+m)

)
time.

5.2 Parameterization by the required number of activated
vertices

We now look at Target Set Selection as at a parameterized problem. In
[12], Nichterlein et al. showed that Perfect Target Set Selection is W [2]-
hard when parameterized by the size of target set k. We consider the general
case of Target Set Selection instead and take the required number of acti-
vated vertices ` as a parameter. It is natural to ask whether the problem remains
intractable with this parameter as well. Note that ` may be significantly large
than k. We show that the Target Set Selection is W [1]-hard even param-
eterized by ` even when all thresholds equal two or all dual thresholds are zero.
We show the result by reduction from Clique problem.
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Theorem 8. Target Set Selection parameterized by ` is W [1]-hard even
if all dual thresholds are equal to 0.

Proof. This problem is similar to the Cutting ` Vertices problem, where one
is asked to delete at most k vertices from a graph so exactly ` vertices become
separated from the remaining graph. In our problem we have an additional
restriction that these vertices must form an independent set. Fortunately, the
proof of W [1]-hardness of Cutting ` Vertices given by Marx [27] works even
in this setting under a small adjustment. For completeness we provide the proof
here again.

Let (G, k) be an instance of the Clique problem. Construct a graph G′ in
which each vertex corresponds to a vertex or an edge of graph G i.e. V (G′) =
V (G)tE(G). Construct a clique in G′ on vertices corresponding to the vertices
of G. Moreover, we add edges in G′ between vertices corresponding to vi ∈ V (G)
and ej ∈ E(G) if and only if vi and ej are incident in G. Consider an instance

(G′, k, k+
(
k
2

)
, 0) of Target Set Selection with the same k, ` equal to k+

(
k
2

)
and with all dual thresholds equal to d = 0.

Observe that if G has a clique of size k, then one can select vertices of this
clique as a target set of size k in G′. Any of the

(
k
2

)
vertices corresponding to

the edges of the clique are connected only with the vertices in the target set.
Hence, vertices corresponding to them become activated, thus giving at least
k +

(
k
2

)
activated vertices in total.

Let us show this in the other direction. We show that if G′ has a target
set of size k activating at least k +

(
k
2

)
vertices than G contains a clique on

k vertices. Note that any of vi ∈ V (G′) can become activated only by being
selected into a target set. Indeed, all vi ∈ V (G′) form a clique and thus any
of them requires at least |V (G)| − 1 vertices in G′ to be selected into a target
set to become activated. This implies that the

(
k
2

)
vertices in G′ that becomes

activated correspond to some edges in G. Note that an edge requires both of its
endpoints to be selected in the target set in order to be activated. The only way
to activate

(
k
2

)
edges by selecting no more than k vertices is to select exactly k

vertices that form a clique in G.

The following theorem provides a similar result with the usage of thresholds
instead of dual thresholds.

Theorem 9. Target Set Selection parameterized by ` is W [1]-hard even
if maximum maximum threshold is two.

Proof. Similarly, to Theorem 8 we construct a reduction from Clique problem.
Let (G, k) be an instance of Clique. We construct graph G′ as in the proof

of Theorem 8 with the only difference that vertices corresponding to vertices of
G now form an independent set. We will refer to the vertex in G′ corresponding
to the edge e ∈ E(G) as ve ∈ V (G′). Similarly, if a vertex from G′ corresponds
to a vertex u ∈ G we refer to it as vu. Slightly abusing notation we will refer to
the set of vertices in G′ corresponding to the vertices V (G) as V and to the set
of vertices corresponding to the edges E(G) as E, V tE = V (G′). Consider now
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an instance (G′, k, k +
(
k
2

)
, 2) of Target Set Selection with all thresholds

equal to t = 2.
Again, if G has a clique of size k, then selecting corresponding vertices as a

target set of G′ leads to activation of the vertices corresponding to the edges of
the clique. Hence, k +

(
k
2

)
vertices will be activated in total.

Let us now prove that if G′ has a target set of size k activating at least
` = k +

(
k
2

)
vertices, then G has a clique on k vertices. Let S be such target

set of G′. Denote by kv = |S ∩ V | the number of vertices in S corresponding to
vertices of G and by ke = |S ∩E| the number of vertices in S corresponding to
edges of E, kv + ke = k.

Now, we show how to convert any target set S of size at most k activating
at least k +

(
k
2

)
vertices into a target set S′ such that |S′| ≤ k, S′ ⊆ V and S′

activates at least k +
(
k
2

)
vertices.

Observe that if there is an edge u1u2 = e ∈ E(G) such that ve ∈ S and
vu1
∈ S then S′ = S \ ve ∪ vu2

also activates at least k +
(
k
2

)
vertices and the

size of S′ is at most k. Thus we can assume that if vu1u2
∈ S, then vu1

, vu2
6∈ S.

Observe that any initially not activated vertex in E becomes activated only
if all two of its neighbours are activated. It means that any such vertex does
not influence the activation process in future. Hence, since G′ is bipartite, the
activation process always finishes within two rounds, and no vertex from V
becomes activated in the second round. Let V1 be the set of vertices of V that
become activated by S in the first round, i.e. V1 = S1(S)\S0(S)∩V . Note that
these vertices are activated directly by ke vertices in S ∩E. Let SE,i be the set
of vertices in S ∩E that have exactly i endpoints in V1. Denote by ke,i the size
of SE,i. Then we have ke,0 + ke,1 + ke,2 = ke. Note that if there is a vertex
in S ∩ E with no endpoints in V1 then one can replace it with any neighbour
and size of S will not change and it will activate at least the same number of
vertices in G′. Thus we can consider that ke,0 = 0.

We show that |V1| ≤ ke,1
2 +ke,2. Indeed, in order to be activated, any vertex

from V1 requires at least two vertices from E to be in the target set. Each
vertex from SE,i contributes to exactly i vertices from V1, and the total number
of contributions is ke,1 + 2ke,2. This number should be at least 2|V1|. Hence,

|V1| ≤ ke,1
2 + ke,2.

Consider S′ = S\E∪V1 i.e. we replace all ke vertices from E with all vertices

from V1. Note that |S′| ≤ |S|− ke,1
2 . Vertices from SE,2 become activated in the

first round since all of them have two endpoints in S′. Thus S′ is now a target
set of size not greater than k − ke,1

2 activating at least `− ke,1 vertices in G′.
Note that any vertex from SE,1 can be activated by adding one more vertex

to S′. Consider set H = N(SE,1) \ V1. If |H| ≤ ke,1
2 then consider S1 = H ∪ S′.

S1 compared to S′ will additionally activate all vertices in SE,1. Note that S1

is a target set S of size at most k activating at least ` vertices.
If |H| > ke,1

2 then build S1 from S′ by simply adding
ke,1
2 arbitrary vertices

from H. Each of these vertices will additionally activate at least one edge, thus
S1 is a target set of size at most k activating at least ` vertices.

We have shown how to transform any target set S activating at least k+
(
k
2

)
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vertices in G′ into a target set S1 such that S1 ⊆ V and S1 activates at least
the same number of vertices in G′. As we have shown earlier, no vertex in
E \ S1 influence the activation process after becoming activated. Then, since
S1 ∩ E = ∅, S1 activates only vertices in E in the first round and the process
finishes. Hence, if (G′, k, k +

(
k
2

)
, 2) has a solution, then G has a clique of size

k.
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