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Abstract

We formulate and prove a formula for the constant term for a cer-
tain class of Laurent polynomials, which include the Dyson conjec-
ture and its generalizations by Bressoud and Goulden. Our method
is explicit Combinatorial Nullstellensatz, which was used recently for
�nding other coe�cients in [Karasev and Petrov, K�arolyi and Nagy,
KNPV, Ekhad and Zeilberger].

We recall the following form of Alon's Combinatorial Nullstellensatz (ap-
peared recently in [Schauz, Laso�n, Karasev and Petrov], but essentially going
back to Jacobi [Jacobi], see modern exposition in [Kunz and Kreuzer]) which
proved to be very useful [Karasev and Petrov, K�arolyi and Nagy, KNPV,
Ekhad and Zeilberger] for �nding coe�cients of polynomials.

Theorem 1 (Combinatorial Nullstellensatz). Let f(x1, . . . , xn) be a polyno-
mial of degree ≤ d1 + · · ·+ dn.

Consider the grid A = {(a1, . . . , an) | ai ∈ Ai}, #Ai = di + 1. The
coe�cient of

∏n
i=1 x

di
i in f is∑

(a1,...,an)∈A

f(a1, . . . , an)∏n
i=1

∏
y∈Ai\ai(ai − y)

.

Let x1, . . . , xn, q be commuting indeterminates. Denote the coe�cient of
x0
1 . . . x

0
n of Laurent polynomial f(x1, . . . , xn, q) as CT [f ].

Let a1, . . . , an be non-negative integers, a = a1 + · · · + an. In a seminal
1962 work [Dyson] the following conjecture was put:

CT
∏
i ̸=j

(1− xi/xj)
ai =

a!∏
ai!

(1)
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This was proved by Gunson [unpublished] and [Wilson] in the same year.
The elegant proof, based on Lagrange interpolation, is given in [Good]. In
[Karasev and Petrov] another proof based on above-stated form of Combi-
natorial Nullstellensatz is given. It was generalized to a q-version (proved
for the �rst time in [Zeilberger and Bressoud] by a di�erent method) in
[K�arolyi and Nagy].

Constant term identities with Laurent polynomials (such as this one)
often arise in quantum electrodynamics. They are also closely related to
Selberg-type integrals, which play an important role in random matrix the-
ory, statistical mechanics and special function theory (see the exposition in
[Forrester and Warnaar]).

There are versions of (a particular case of) Dyson's conjecture for arbi-
trary root systems, in which Dyson's original case corresponds to An. These
are famous Macdonald's conjectures proved by [I. Cherednik] with the help
of the so called double a�ne Hecke algebras.

Understanding, for which Laurent polynomials such identities do exist,
is an important question. The application of Combinatorial Nullstellensatz
allowed to make substantial progress in this area, and our results continue
this development.

We start from reminding the proof of q-version of Dyson conjecture.
De�ne [l, r] = {l, l + 1, . . . , r}.
Let χ(. . . ) be equal to 1 if the expression in parentheses is true, and to 0

otherwise.
Also, denote (x)n =

∏n−1
t=0 (1− qtx).

Theorem 2. Let a1, . . . , an be non-negative integers, a = a1 + · · · + an.
Consider Laurent polynomial

f(x1, . . . , xn, q) =
∏

1≤i<j≤n

(xi/xj)ai(qxj/xi)aj .

Then

CT [f ] =
(q)a

(q)a1(q)a2 · · · (q)an
.

Proof. We can assume all ai > 0 (if ai = 0 then each factor of f contains xi

only in non-negative degree. Since we are interested in constant term of f ,
we can assume f does not depend on xi).
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CT [f ] equals to the coe�cient of
∏n

i=1 x
a−ai
i of polynomial g, where

g(x1, . . . , xn, q) =
∏

1≤i<j≤n

(xi/xj)ai(qxj/xi)aj × xai
j x

aj
i .

We will calculate this coe�cient of g using Combinatorial Nullstellensatz.
Consider grid

R = {(qy1 , . . . , qyn) | 0 ≤ yi ≤ a− ai}.

Let us assume x = (x1, . . . , xn) = (qy1 , . . . , qyn) = qy ∈ R is not a zero of
g. Then for each i < j

yj − yi ≥ ai or yi − yj ≥ aj + 1,

otherwise one of the factors in (xi/xj)ai(qxj/xi)aj × xai
j x

aj
i equals to zero.

In particular, it means all yi are pairwise distinct. Let π ∈ Sn be such a
permutation that

yπ1 < yπ2 < · · · < yπn .

We know that

yπi+1
− yπi

≥ aπi
+ χ(πi+1 > πi).

Adding up these inequalities and taking into account that yπ1 ≥ 0, we get

yπn − yπ1 ≥ a− aπn +
n−1∑
i=1

χ(πi+1 > πi).

But yπn ≤ a− aπn , so πi > πi+1 for all i, which means π = id.
Let us note that all intermediate inequalities have to become equalities,

so the only point on grid which is not a zero of g is qy, where yi = a1 + a2 +
· · ·+ ai−1.

De�ne for convenience yn+1 = a. By Combinatorial Nullstellensatz

CT [f ] =

( ∏
1≤i<j≤n

(qyi−yj)ai(q
yj+1−yi)aj × qyjaiqyiaj

)
/

 n∏
i=1

∏
z∈[0,a−ai]\yi

(qyi − qz)

 =

=

( ∏
1≤i<j≤n

(
ai−1∏
k=0

(qyj − qyi+k)×
aj−1∏
k=0

(qyi − qyj+1+k)

))
/
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/

(
n∏

i=1

(−1)yi

(
yi−1∏
t=0

qt

)
(q)yiq

yi(a−ai−yi)(q)a−ai−yi

)
=

=

( ∏
1≤i<j≤n

(
(−1)ai

(
yi+1−1∏
t=yi

qt

)
(q)yj−yi

(q)yj−yi+1

× qyiaj
(q)yj+1−yi

(q)yj−yi

))
/

/

(
n∏

i=1

(−1)yi

(
yi−1∏
t=0

qt

)
(q)yi−y1q

yi(a−ai−yi)(q)yn+1−yi+1

)
=

= (q)yn+1−y1 /

(
n∏

i=1

(q)yi+1−yi

)
=

(q)a
(q)a1 · · · (q)an

.

Next we give simple proofs of the master theorem and its transitive ana-
logue from [Bressoud and Goulden] using the similar technique.

A tournament T on n vertices is a set of ordered pairs (i, j) such that
1 ≤ i ̸= j ≤ n and (i, j) ∈ T if and only if (j, i) /∈ T . One way of interpreting
a tournament is as a relation on a set [1, n]: i → j if and only if (i, j) ∈ T .

A tournament T is transitive if relation → is transitive. For transitive
tournament T a winner permutation σ ∈ Sn is such a permutation that
σi → σj if and only if i < j.

Theorem 3. Let T be a tournament on n vertices. Let a1, . . . , an be positive
integers, a = a1 + · · ·+ an. Consider Laurent polynomial

f(x1, . . . , xn, q) =
∏

(i,j)∈T

(xi/xj)ai(qxj/xi)aj−1.

Then CT [f ] = 0 if T is nontransitive. If T is a transitive tournament with
winner permutation σ,

CT [f ] =
(q)a

(q)a1(q)a2 · · · (q)an
×

n∏
i=1

1− qaσi

1− qaσ1+···+aσi
.

Proof. Let deg(i) = #{j | (i, j) ∈ T}. Consider a permutation δ ∈ Sn such
that for each 1 ≤ i < j ≤ n deg(δi) ≥ deg(δj) and deg(δi) = deg(δj) only
when δi < δj. Note that σ = δ in case of transitive T .
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CT [f ] equals to the coe�cient of
∏n

i=1 x
a−ai−deg(i)
i of polynomial g, where

g(x1, . . . , xn, q) =
∏

(i,j)∈T

(xi/xj)ai(qxj/xi)aj−1 × xai
j x

aj−1
i .

Once again, we will calculate this coe�cient using Combinatorial Nullstel-
lensatz.

Consider grid
R = {(qy1 , . . . , qyn) | yi ∈ Ri},

where
Ri = [0, a− ai] \ Si,

Sδi = {a− aδi −
n∑

v=j

aδv | n+ 1− deg(δi) < j ≤ n+ 1}.

Assume x = (x1, . . . , xn) = (qy1 , . . . , qyn) = qy ∈ R is not a zero of g. For
each (i, j) ∈ T

yj − yi ≥ ai or yi − yj ≥ aj,

otherwise one of the factors in (xi/xj)ai(qxj/xi)aj−1×xai
j x

aj−1
i equals to zero.

It follows all yi are pairwise distinct. Let π ∈ Sn be such a permutation
that

yπ1 < yπ2 < · · · < yπn .

We know that
yπi+1

− yπi
≥ aπi

.

Adding up these inequalities and taking into account that yπ1 ≥ 0, we get

yπn − yπ1 ≥ a− aπn .

But yπn ≤ a− aπn , so all intermediate inequalities have to become equalities
and

yπi
= a−

n∑
j=i

aπj
.

Since yπn /∈ Sπn , from de�nition of Sπn it follows deg(πn) = 0. But T is a
tournament, so deg(i) = 0 for at most one i. Since qy is not a zero of g, such
i exists (and equals to δn), so deg(δn) = 0 and πn = δn.

Assume we already showed that πk = δk and deg(δk) = n − k for j <
k ≤ n. Note that these conditions on deg imply that (δi, δk) ∈ T for all
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1 ≤ i < k, j < k ≤ n. Then deg(δi) ≥ n− j for all 1 ≤ i ≤ j, and since T is
a tournament, deg(δi) > n− j for all 1 ≤ i < j.

yπj
/∈ Sπj

, so deg(πj) ≤ n − j. The only case in which it is possible is
when πj = δj and deg(δj) = n− j.

Finally, either all points of R are zeros of g and CT [f ] = 0 or π = δ and
deg(δi) = n − i for all i. If the latter is the case, obviously T is transitive
and π = δ = σ.

The only thing left is to calculate the coe�cient in case of transitive T .
We will omit the calculations here since they are given in more general case
in the next theorem.

The main result is the following theorem.

Theorem 4. Let 1 ≤ l1 ≤ m1 ≤ r1 < l2 ≤ · · · ≤ rk−1 < lk ≤ mk ≤ rk ≤ n,

Bi ⊂ Ci =

ri∪
j=mi+1

[li, j − 2]× j,

Ui =

(
Bi ∪ ([li,mi − 1]×mi) ∪

ri−1∪
j=mi

(j, j + 1)

)
, U =

k∪
i=1

Ui.

Let a1, . . . , an be positive integers, a = a1 + · · · + an. Consider Laurent
polynomial

f(x1, . . . , xn, q) =
∏

1≤i<j≤n

(xi/xj)ai(qxj/xi)aj−χ((i,j)∈U).

Then

CT [f ] =
(q)a

(q)a1(q)a2 · · · (q)an
×

k∏
i=1

ri∏
j=mi

1− qaj

1− qali+···+aj
.

Remark 1. The statement of the theorem is long and cumbersome, therefore
we provide an illustration that can help to understand the idea behind the
formal de�nitions.

Consider correspondence between a Laurent polynomial

f(x1, . . . , xn, q) =
∏

1≤i<j≤n

(xi/xj)ai,j(qxj/xi)aj,i
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and a square matrix of non-negative integers with zeroes on the main diagonal
A = {ai,j}1≤i,j≤n.

The polynomial from q-Dyson theorem corresponds to a matrix
0 a1 a1 . . . a1
a2 0 a2 . . . a2
a3 a3 0 . . . a3
. . . . . . . . . . . . . . .
an an . . . an 0

 .

The polynomial from transitive part of tournament theorem (for winner
permutation σ = id) corresponds to a matrix

0 a1 a1 . . . a1
a2 − 1 0 a2 . . . a2
a3 − 1 a3 − 1 0 . . . a3
. . . . . . . . . . . . . . .

an − 1 an − 1 . . . an − 1 0

 .

The polynomial from the main theorem in case k = 1, l1 = 2, m1 = 5,
r1 = 8, B1 = {(2, 6), (4, 6), (3, 7), (4, 7), (2, 8), (4, 8)} corresponds to a matrix



0 a1 a1 a1 a1 a1 a1 a1 a1
a2 0 a2 a2 a2 a2 a2 a2 a2
a3 a3 0 a3 a3 a3 a3 a3 a3
a4 a4 a4 0 a4 a4 a4 a4 a4
a5 a5 − 1 a5 − 1 a5 − 1 0 a5 a5 a5 a5
a6 a6 − 1 a6 a6 − 1 a6 − 1 0 a6 a6 a6
a7 a7 a7 − 1 a7 − 1 a7 a7 − 1 0 a7 a7
a8 a8 − 1 a8 a8 − 1 a8 a8 a8 − 1 0 a8
a9 a9 a9 a9 a9 a9 a9 a9 0


.

As we can see, this matrix is a deformed version of q-Dyson matrix, with
some coe�cients decreased. The decreased coe�cients are grouped into k
blocks. Each block consists of the segment of some row ([li,mi − 1] × mi,
marked red in the example matrix above), the segment of the diagonal (the

one under the main diagonal,
ri−1∪
j=mi

(j, j+1), also marked red) and an arbitrary

subset of elements �under� them (Bi is an arbitrary subset of Ci, which is
marked blue in the example).
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Remark 2. This theorem gives classic q-Dyson theorem when k = 0. It also
gives transitive part of tournament theorem (for winner permutation σ = id)
when k = 1, l1 = m1 = 1, r1 = n, B1 = C1.

Remark 3. This is a generalization of theorem 2.5 from [Bressoud and Goulden].
Speci�cally, it gives the said theorem when Bi = Ci for all i.

Proof. CT [f ] equals to the coe�cient of

n∏
i=1

x
a−ai−

∑n
j=1 χ((i,j)∈U)

i

of polynomial g, where

g(x1, . . . , xn, q) =
∏

1≤i<j≤n

(xi/xj)ai(qxj/xi)aj−χ((i,j)∈U) × xai
j x

aj−χ((i,j)∈U)
i .

We will use Combinatorial Nullstellensatz again. Consider grid

R = {(qy1 , . . . , qyn) | yi ∈ Ri},

where
Ri = [0, a− ai] \ Si,

Si = {a− ai −
n∑

v=rt+1

av} ∪ {a− ai −
n∑

v=j

av | (i, j) ∈ Bt}, if i ∈ [lt, rt − 1] ∃ t,

Si = ∅ otherwise.

Denote AoB = {(i, j) ∈ A×B | i < j}.
Consider

N = [1, n]o [1, n], Vi = [li, ri]o [mi, ri], V =
k∪

i=1

Vi.

We replace linear factors of g

(xi − qajxj), where (i, j) ∈ V \ U

with
(xi − qajxj − (qa−ai−

∑n
v=j av − qa−

∑n
v=j av))
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and call the modi�ed polynom g′. The coe�cient of g we are interested in
coincides with the corresponding coe�cient of g′ because it has the maximal
sum of degrees of xi and the polynoms di�er only by constants in linear
factors.

Let

χ1(i, j) = χ

(
(i, j) ∈ V \ U and yi = a− ai −

n∑
v=j

av and yj = a−
n∑

v=j

av

)
.

Assume g′ does not vanish at x = qy ∈ R, then for each i < j either
yj − yi ≥ ai + χ1(i, j) or yi − yj ≥ aj + χ((i, j) ∈ N \ V ) (otherwise one of
the linear factors of g′ is zero).

It follows that all yi are pairwise distinct. Let π ∈ Sn be such a permu-
tation that

yπ1 < yπ2 < · · · < yπn .

We know that

yπi+1
− yπi

≥ aπi
+ χ((πi+1, πi) ∈ N \ V ) + χ1(πi, πi+1).

Adding up these inequalities and taking into account that yπ1 ≥ 0, we get

yπn ≥ a− aπn +
n−1∑
i=1

χ((πi+1, πi) ∈ N \ V ) + χ1(πi, πi+1).

But yπn ≤ a− aπn , so (πi+1, πi) /∈ N \ V and χ1(πi, πi+1) = 0 for all i.
Note that all intermediate inequalities have to become equalities, so

yπi
= a−

n∑
j=i

aπj
.

Let us denote the event πi+1 < πi as descent. The descent is possible only
then (πi+1, πi) ∈ V . From de�nition of V it follows that descents happen only
if πi, πi+1 ∈ [lt, rt] for some t. Then for each t all elements of π in range [lt, rt]
should go in a row, all elements less than them should go before them, and
all elements bigger should go after.

We will show that elements from [lt, rt] go not just in a row but in as-
cending order. Therefore the only possible choice for π is id and there is only
one point on grid at which g′ does not vanish.

9



If πrt ∈ [lt, rt − 1], then

yπrt
= a− aπrt

−
n∑

j=rt+1

aπj
= a− aπrt

−
n∑

j=rt+1

aj,

which contradicts the de�nition of Rπrt
. So πrt = rt.

Consider s ≥ mt and we already showed that πs+1 = s + 1, . . . , πrt = rt.
Let us assume πs < s.

χ1(πs, πs+1) = χ1(πs, s+ 1) = 0. Additionally,

yπs = a− aπs −
n∑

j=s+1

aj, ys+1 = a−
n∑

j=s+1

aj

and (πs, s+1) ∈ V , then from de�nition of χ1 it follows that (πs, s+1) ∈ U .
πs < s, so (πs, s+ 1) ∈ Bt. But

yπs = a− aπs −
n∑

j=s+1

aj,

which contradicts the de�nition of Rπs . So πs = s.
We proved that πmt = mt, . . . , πrt = rt. By de�nition of V no descents

are possible when πi, πi+1 ∈ [lt,mt − 1] so all elements of [lt,mt − 1] also go
in ascending order.

So π = id, the only point of R which is not a zero of g′ is x = qy, where
y = (0, a1, a1 + a2, . . . , a1 + · · ·+ an−1).

Let us see what changes happened to calculation of the coe�cient com-
pared to q-Dyson theorem. For convenience denote yn+1 = a.

Fix 1 ≤ t ≤ k.
Firstly, elements of Si (lt ≤ i < rt) disappeared from Ri , so the coe�cient

increased in(
rt−1∏
i=lt

(
qyi − qa−ai−

∑n
v=rt+1 av

))
×

∏
(i,j)∈Bt

(
qyi − qa−ai−

∑n
v=j av

)
times.

Secondly, we added linear factor

(xi − qajxj − (qa−ai−
∑n

v=j av − qa−
∑n

s=j av))
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for all (i, j) ∈ Vt \ Ut = Ct \Bt, so the coe�cient increased in∏
(i,j)∈Ct\Bt

(
qyi − qyj+1 − (qa−ai−

∑n
v=j av − qa−

∑n
v=j av)

)
=

=
∏

(i,j)∈Ct\Bt

(
qyi − qa−ai−

∑n
v=j av

)
times.

Thirdly, we removed linear factor (xi − qajxj) for all (i, j) ∈ Vt, so the
coe�cient decreased in ∏

(i,j)∈Vt

(qyi − qyj+1)

times.
In total, the coe�cient increased in

rt−1∏
i=lt

(
qyi − qa−ai−

∑n
v=rt+1 av

)
×

∏
(i,j)∈Ct

(
qyi − qa−ai−

∑n
v=j av

)
/

/

 ∏
(i,j)∈Vt

(qyi − qyj+1)

 =

=
rt∏

j=mt

j−1∏
i=lt

(
qyi − qa−ai−

∑n
v=j+1 av

)
/

(
rt∏

j=mt

j−1∏
i=lt

(qyi − qyj+1)

)
=

=
rt∏

j=mt

j−1∏
i=lt

(
1− qai+1+···+aj

)
/

(
rt∏

j=mt

j−1∏
i=lt

(1− qai+···+aj)

)
=

=
rt∏

j=mt

j∏
i=lt+1

(
1− qai+···+aj

)
/

(
rt∏

j=mt

j−1∏
i=lt

(1− qai+···+aj)

)
=

=
rt∏

j=mt

1− qaj

1− qalt+···+aj

times.
It remains to multiply the results for 1 ≤ t ≤ k.
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